Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383109002> ?p ?o ?g. }
- W4383109002 abstract "We propose a compact pipeline to unify all the steps of Visual Localization: image retrieval, candidate re-ranking and initial pose estimation, and camera pose refinement. Our key assumption is that the deep features used for these individual tasks share common characteristics, so we should reuse them in all the procedures of the pipeline. Our DRAN (Deep Retrieval and image Alignment Network) is able to extract global descriptors for efficient image retrieval, use intermediate hierarchical features to re-rank the retrieval list and produce an initial pose guess, which is finally refined by means of a feature-metric optimization based on learned deep multi-scale dense features. DRAN is the first single network able to produce the features for the three steps of visual localization. DRAN achieves competitive performance in terms of robustness and accuracy under challenging conditions in public benchmarks, outperforming other unified approaches and consuming lower computational and memory cost than its counterparts using multiple networks. Code and models will be publicly available at github.com/jmorlana/DRAN." @default.
- W4383109002 created "2023-07-05" @default.
- W4383109002 creator A5056981308 @default.
- W4383109002 creator A5072782079 @default.
- W4383109002 date "2023-05-29" @default.
- W4383109002 modified "2023-10-01" @default.
- W4383109002 title "Reuse your features: unifying retrieval and feature-metric alignment" @default.
- W4383109002 cites W1989484209 @default.
- W4383109002 cites W1991544872 @default.
- W4383109002 cites W2108134361 @default.
- W4383109002 cites W2108598243 @default.
- W4383109002 cites W2117228865 @default.
- W4383109002 cites W2128017662 @default.
- W4383109002 cites W2151103935 @default.
- W4383109002 cites W2151290401 @default.
- W4383109002 cites W2152671441 @default.
- W4383109002 cites W2155893237 @default.
- W4383109002 cites W2471962767 @default.
- W4383109002 cites W2474281075 @default.
- W4383109002 cites W2605111497 @default.
- W4383109002 cites W2740418457 @default.
- W4383109002 cites W2771385090 @default.
- W4383109002 cites W2902101981 @default.
- W4383109002 cites W2904816510 @default.
- W4383109002 cites W2951019013 @default.
- W4383109002 cites W2962705366 @default.
- W4383109002 cites W2963588253 @default.
- W4383109002 cites W2963760790 @default.
- W4383109002 cites W2964157791 @default.
- W4383109002 cites W2979458572 @default.
- W4383109002 cites W2982529469 @default.
- W4383109002 cites W2990519439 @default.
- W4383109002 cites W2999597893 @default.
- W4383109002 cites W3034213661 @default.
- W4383109002 cites W3034275286 @default.
- W4383109002 cites W3043075211 @default.
- W4383109002 cites W3103648783 @default.
- W4383109002 cites W3106653913 @default.
- W4383109002 cites W3107170921 @default.
- W4383109002 cites W3128600151 @default.
- W4383109002 cites W3165610079 @default.
- W4383109002 cites W3166285241 @default.
- W4383109002 cites W3176602998 @default.
- W4383109002 cites W3205053403 @default.
- W4383109002 doi "https://doi.org/10.1109/icra48891.2023.10160501" @default.
- W4383109002 hasPublicationYear "2023" @default.
- W4383109002 type Work @default.
- W4383109002 citedByCount "0" @default.
- W4383109002 crossrefType "proceedings-article" @default.
- W4383109002 hasAuthorship W4383109002A5056981308 @default.
- W4383109002 hasAuthorship W4383109002A5072782079 @default.
- W4383109002 hasBestOaLocation W43831090022 @default.
- W4383109002 hasConcept C104317684 @default.
- W4383109002 hasConcept C114614502 @default.
- W4383109002 hasConcept C115961682 @default.
- W4383109002 hasConcept C124101348 @default.
- W4383109002 hasConcept C138885662 @default.
- W4383109002 hasConcept C153180895 @default.
- W4383109002 hasConcept C154945302 @default.
- W4383109002 hasConcept C162324750 @default.
- W4383109002 hasConcept C164226766 @default.
- W4383109002 hasConcept C1667742 @default.
- W4383109002 hasConcept C176217482 @default.
- W4383109002 hasConcept C185592680 @default.
- W4383109002 hasConcept C18903297 @default.
- W4383109002 hasConcept C189430467 @default.
- W4383109002 hasConcept C199360897 @default.
- W4383109002 hasConcept C206588197 @default.
- W4383109002 hasConcept C21547014 @default.
- W4383109002 hasConcept C26517878 @default.
- W4383109002 hasConcept C2776401178 @default.
- W4383109002 hasConcept C33923547 @default.
- W4383109002 hasConcept C38652104 @default.
- W4383109002 hasConcept C41008148 @default.
- W4383109002 hasConcept C41895202 @default.
- W4383109002 hasConcept C43521106 @default.
- W4383109002 hasConcept C52622490 @default.
- W4383109002 hasConcept C55493867 @default.
- W4383109002 hasConcept C63479239 @default.
- W4383109002 hasConcept C86803240 @default.
- W4383109002 hasConceptScore W4383109002C104317684 @default.
- W4383109002 hasConceptScore W4383109002C114614502 @default.
- W4383109002 hasConceptScore W4383109002C115961682 @default.
- W4383109002 hasConceptScore W4383109002C124101348 @default.
- W4383109002 hasConceptScore W4383109002C138885662 @default.
- W4383109002 hasConceptScore W4383109002C153180895 @default.
- W4383109002 hasConceptScore W4383109002C154945302 @default.
- W4383109002 hasConceptScore W4383109002C162324750 @default.
- W4383109002 hasConceptScore W4383109002C164226766 @default.
- W4383109002 hasConceptScore W4383109002C1667742 @default.
- W4383109002 hasConceptScore W4383109002C176217482 @default.
- W4383109002 hasConceptScore W4383109002C185592680 @default.
- W4383109002 hasConceptScore W4383109002C18903297 @default.
- W4383109002 hasConceptScore W4383109002C189430467 @default.
- W4383109002 hasConceptScore W4383109002C199360897 @default.
- W4383109002 hasConceptScore W4383109002C206588197 @default.
- W4383109002 hasConceptScore W4383109002C21547014 @default.
- W4383109002 hasConceptScore W4383109002C26517878 @default.
- W4383109002 hasConceptScore W4383109002C2776401178 @default.
- W4383109002 hasConceptScore W4383109002C33923547 @default.