Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383162965> ?p ?o ?g. }
- W4383162965 endingPage "105194" @default.
- W4383162965 startingPage "105194" @default.
- W4383162965 abstract "Ultrasound breast tumour segmentation is a key step in computer-aided diagnosis and provides an important basis for clinical diagnosis and analysis. Accurate segmentation of breast tumours from ultrasound images is a challenging task due to the characteristics of black shadows, blurred boundaries and uneven colour intensity variations between classes. Currently, most breast tumour segmentation methods focus on extracting multi-scale information and fusing contextual information while underestimating the importance of feature information that can assist in identifying object boundaries in segmentation tasks. The loss of boundary feature information can easily lead to discontinuity or inaccuracy of the target boundary when the network generates the final prediction map. To address this problem, we propose a new feedback refinement boundary network (FRBNet) for accurate segmentation of breast tumour regions in ultrasound images, which mainly consists of a channel calibration module (CCM), boundary detection (BD) module, and feedback refinement module (FRM). Specifically, before fusing low-level feature maps with high-level feature maps, CCM first adopts the method of redistributing feature channel responses to enhance the channels carrying key target information and suppress the noisy channels in low-level feature maps. The BD module then improves the quality of the boundaries in the segmentation results by additionally learning the boundaries of breast tumours to provide accurate boundary feature information for subsequent prediction. The FRM employs a feedback mechanism that complementarily fuses the coarse prediction map and the feature map containing the target boundary feature information, thus achieving the best prediction results before generating the final prediction map. Experimental results on a public ultrasound breast dataset show that our network outperforms other medical image segmentation methods." @default.
- W4383162965 created "2023-07-05" @default.
- W4383162965 creator A5017133568 @default.
- W4383162965 creator A5058330993 @default.
- W4383162965 creator A5065666173 @default.
- W4383162965 creator A5067796357 @default.
- W4383162965 creator A5067831975 @default.
- W4383162965 date "2023-09-01" @default.
- W4383162965 modified "2023-10-16" @default.
- W4383162965 title "FRBNet: Feedback refinement boundary network for semantic segmentation in breast ultrasound images" @default.
- W4383162965 cites W1903029394 @default.
- W4383162965 cites W2066717182 @default.
- W4383162965 cites W2067115868 @default.
- W4383162965 cites W2074620982 @default.
- W4383162965 cites W2122264932 @default.
- W4383162965 cites W2194775991 @default.
- W4383162965 cites W2799597343 @default.
- W4383162965 cites W2922509574 @default.
- W4383162965 cites W2962914239 @default.
- W4383162965 cites W2963037989 @default.
- W4383162965 cites W2963706010 @default.
- W4383162965 cites W2991372685 @default.
- W4383162965 cites W2996290406 @default.
- W4383162965 cites W3013198566 @default.
- W4383162965 cites W3023282579 @default.
- W4383162965 cites W3037414627 @default.
- W4383162965 cites W3090920939 @default.
- W4383162965 cites W3096812112 @default.
- W4383162965 cites W3103010481 @default.
- W4383162965 cites W3126389275 @default.
- W4383162965 cites W3128646645 @default.
- W4383162965 cites W3184617284 @default.
- W4383162965 cites W3204201789 @default.
- W4383162965 cites W3210259784 @default.
- W4383162965 cites W4200243852 @default.
- W4383162965 cites W4224232907 @default.
- W4383162965 cites W4283763166 @default.
- W4383162965 cites W4285891078 @default.
- W4383162965 cites W4294862191 @default.
- W4383162965 cites W4306928120 @default.
- W4383162965 doi "https://doi.org/10.1016/j.bspc.2023.105194" @default.
- W4383162965 hasPublicationYear "2023" @default.
- W4383162965 type Work @default.
- W4383162965 citedByCount "0" @default.
- W4383162965 crossrefType "journal-article" @default.
- W4383162965 hasAuthorship W4383162965A5017133568 @default.
- W4383162965 hasAuthorship W4383162965A5058330993 @default.
- W4383162965 hasAuthorship W4383162965A5065666173 @default.
- W4383162965 hasAuthorship W4383162965A5067796357 @default.
- W4383162965 hasAuthorship W4383162965A5067831975 @default.
- W4383162965 hasBestOaLocation W43831629651 @default.
- W4383162965 hasConcept C121608353 @default.
- W4383162965 hasConcept C126322002 @default.
- W4383162965 hasConcept C127162648 @default.
- W4383162965 hasConcept C134306372 @default.
- W4383162965 hasConcept C138885662 @default.
- W4383162965 hasConcept C153180895 @default.
- W4383162965 hasConcept C154945302 @default.
- W4383162965 hasConcept C2776401178 @default.
- W4383162965 hasConcept C2777423100 @default.
- W4383162965 hasConcept C2780472235 @default.
- W4383162965 hasConcept C31258907 @default.
- W4383162965 hasConcept C31972630 @default.
- W4383162965 hasConcept C33923547 @default.
- W4383162965 hasConcept C41008148 @default.
- W4383162965 hasConcept C41895202 @default.
- W4383162965 hasConcept C52622490 @default.
- W4383162965 hasConcept C530470458 @default.
- W4383162965 hasConcept C62354387 @default.
- W4383162965 hasConcept C71924100 @default.
- W4383162965 hasConcept C89600930 @default.
- W4383162965 hasConceptScore W4383162965C121608353 @default.
- W4383162965 hasConceptScore W4383162965C126322002 @default.
- W4383162965 hasConceptScore W4383162965C127162648 @default.
- W4383162965 hasConceptScore W4383162965C134306372 @default.
- W4383162965 hasConceptScore W4383162965C138885662 @default.
- W4383162965 hasConceptScore W4383162965C153180895 @default.
- W4383162965 hasConceptScore W4383162965C154945302 @default.
- W4383162965 hasConceptScore W4383162965C2776401178 @default.
- W4383162965 hasConceptScore W4383162965C2777423100 @default.
- W4383162965 hasConceptScore W4383162965C2780472235 @default.
- W4383162965 hasConceptScore W4383162965C31258907 @default.
- W4383162965 hasConceptScore W4383162965C31972630 @default.
- W4383162965 hasConceptScore W4383162965C33923547 @default.
- W4383162965 hasConceptScore W4383162965C41008148 @default.
- W4383162965 hasConceptScore W4383162965C41895202 @default.
- W4383162965 hasConceptScore W4383162965C52622490 @default.
- W4383162965 hasConceptScore W4383162965C530470458 @default.
- W4383162965 hasConceptScore W4383162965C62354387 @default.
- W4383162965 hasConceptScore W4383162965C71924100 @default.
- W4383162965 hasConceptScore W4383162965C89600930 @default.
- W4383162965 hasFunder F4320321001 @default.
- W4383162965 hasFunder F4320323172 @default.
- W4383162965 hasFunder F4320335777 @default.
- W4383162965 hasLocation W43831629651 @default.
- W4383162965 hasOpenAccess W4383162965 @default.
- W4383162965 hasPrimaryLocation W43831629651 @default.
- W4383162965 hasRelatedWork W1992327129 @default.