Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383172020> ?p ?o ?g. }
- W4383172020 abstract "Predicting 3D human poses in real-world scenarios, also known as human pose forecasting, is inevitably subject to noisy inputs arising from inaccurate 3D pose estimations and occlusions. To address these challenges, we propose a diffusion-based approach that can predict given noisy observations. We frame the prediction task as a denoising problem, where both observation and prediction are considered as a single sequence containing missing elements (whether in the observation or prediction horizon). All missing elements are treated as noise and denoised with our conditional diffusion model. To better handle long-term forecasting horizon, we present a temporal cascaded diffusion model. We demonstrate the benefits of our approach on four publicly available datasets (Human3.6M, HumanEva-I, AMASS, and 3DPW), outperforming the state-of-the-art. Additionally, we show that our framework is generic enough to improve any 3D pose prediction model as a pre-processing step to repair their inputs and a post-processing step to refine their outputs. The code is available online: https://github.com/vita-epfl/DePOSit." @default.
- W4383172020 created "2023-07-05" @default.
- W4383172020 creator A5003047476 @default.
- W4383172020 creator A5005790225 @default.
- W4383172020 creator A5009010754 @default.
- W4383172020 creator A5020805912 @default.
- W4383172020 creator A5021111864 @default.
- W4383172020 creator A5068504559 @default.
- W4383172020 creator A5079962204 @default.
- W4383172020 date "2023-05-29" @default.
- W4383172020 modified "2023-10-01" @default.
- W4383172020 title "A generic diffusion-based approach for 3D human pose prediction in the wild" @default.
- W4383172020 cites W1735317348 @default.
- W4383172020 cites W2099333815 @default.
- W4383172020 cites W2101032778 @default.
- W4383172020 cites W2270484149 @default.
- W4383172020 cites W2606517404 @default.
- W4383172020 cites W2606862842 @default.
- W4383172020 cites W2623550831 @default.
- W4383172020 cites W2738992186 @default.
- W4383172020 cites W2793483732 @default.
- W4383172020 cites W2887738788 @default.
- W4383172020 cites W2890001928 @default.
- W4383172020 cites W2891091472 @default.
- W4383172020 cites W2895748257 @default.
- W4383172020 cites W2898429451 @default.
- W4383172020 cites W2963065614 @default.
- W4383172020 cites W2963165299 @default.
- W4383172020 cites W2963324990 @default.
- W4383172020 cites W2963548793 @default.
- W4383172020 cites W2963669520 @default.
- W4383172020 cites W2964203186 @default.
- W4383172020 cites W2971856312 @default.
- W4383172020 cites W2983925976 @default.
- W4383172020 cites W3002101995 @default.
- W4383172020 cites W3034423770 @default.
- W4383172020 cites W3034696014 @default.
- W4383172020 cites W3034938233 @default.
- W4383172020 cites W3035545045 @default.
- W4383172020 cites W3036644940 @default.
- W4383172020 cites W3045019771 @default.
- W4383172020 cites W3153832461 @default.
- W4383172020 cites W3174292795 @default.
- W4383172020 cites W3195924537 @default.
- W4383172020 cites W3203206590 @default.
- W4383172020 cites W3203785074 @default.
- W4383172020 cites W3204623367 @default.
- W4383172020 cites W3205898917 @default.
- W4383172020 cites W3207857704 @default.
- W4383172020 cites W4214657742 @default.
- W4383172020 cites W4214677627 @default.
- W4383172020 cites W4214722801 @default.
- W4383172020 cites W4312497550 @default.
- W4383172020 cites W4312585707 @default.
- W4383172020 cites W4312587200 @default.
- W4383172020 cites W4312711111 @default.
- W4383172020 cites W4312774977 @default.
- W4383172020 cites W4312933868 @default.
- W4383172020 cites W4313056154 @default.
- W4383172020 doi "https://doi.org/10.1109/icra48891.2023.10160399" @default.
- W4383172020 hasPublicationYear "2023" @default.
- W4383172020 type Work @default.
- W4383172020 citedByCount "0" @default.
- W4383172020 crossrefType "proceedings-article" @default.
- W4383172020 hasAuthorship W4383172020A5003047476 @default.
- W4383172020 hasAuthorship W4383172020A5005790225 @default.
- W4383172020 hasAuthorship W4383172020A5009010754 @default.
- W4383172020 hasAuthorship W4383172020A5020805912 @default.
- W4383172020 hasAuthorship W4383172020A5021111864 @default.
- W4383172020 hasAuthorship W4383172020A5068504559 @default.
- W4383172020 hasAuthorship W4383172020A5079962204 @default.
- W4383172020 hasBestOaLocation W43831720202 @default.
- W4383172020 hasConcept C115961682 @default.
- W4383172020 hasConcept C119857082 @default.
- W4383172020 hasConcept C121332964 @default.
- W4383172020 hasConcept C124101348 @default.
- W4383172020 hasConcept C126042441 @default.
- W4383172020 hasConcept C154945302 @default.
- W4383172020 hasConcept C162324750 @default.
- W4383172020 hasConcept C163294075 @default.
- W4383172020 hasConcept C177264268 @default.
- W4383172020 hasConcept C187736073 @default.
- W4383172020 hasConcept C199360897 @default.
- W4383172020 hasConcept C2776760102 @default.
- W4383172020 hasConcept C2778112365 @default.
- W4383172020 hasConcept C2780451532 @default.
- W4383172020 hasConcept C41008148 @default.
- W4383172020 hasConcept C54355233 @default.
- W4383172020 hasConcept C69357855 @default.
- W4383172020 hasConcept C76155785 @default.
- W4383172020 hasConcept C86803240 @default.
- W4383172020 hasConcept C97355855 @default.
- W4383172020 hasConcept C99498987 @default.
- W4383172020 hasConceptScore W4383172020C115961682 @default.
- W4383172020 hasConceptScore W4383172020C119857082 @default.
- W4383172020 hasConceptScore W4383172020C121332964 @default.
- W4383172020 hasConceptScore W4383172020C124101348 @default.
- W4383172020 hasConceptScore W4383172020C126042441 @default.
- W4383172020 hasConceptScore W4383172020C154945302 @default.
- W4383172020 hasConceptScore W4383172020C162324750 @default.