Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383187427> ?p ?o ?g. }
- W4383187427 endingPage "4265" @default.
- W4383187427 startingPage "4253" @default.
- W4383187427 abstract "The past decade has seen a number of impressive developments in predictive chemistry and reaction informatics driven by machine learning applications to computer-aided synthesis planning. While many of these developments have been made even with relatively small, bespoke data sets, in order to advance the role of AI in the field at scale, there must be significant improvements in the reporting of reaction data. Currently, the majority of publicly available data is reported in an unstructured format and heavily imbalanced toward high-yielding reactions, which influences the types of models that can be successfully trained. In this Perspective, we analyze several data curation and sharing initiatives that have seen success in chemistry and molecular biology. We discuss several factors that have contributed to their success and how we can take lessons from these case studies and apply them to reaction data. Finally, we spotlight the Open Reaction Database and summarize key actions the community can take toward making reaction data more findable, accessible, interoperable, and reusable (FAIR), including the use of mandates from funding agencies and publishers." @default.
- W4383187427 created "2023-07-06" @default.
- W4383187427 creator A5037497403 @default.
- W4383187427 creator A5076162644 @default.
- W4383187427 creator A5090993508 @default.
- W4383187427 date "2023-07-05" @default.
- W4383187427 modified "2023-09-25" @default.
- W4383187427 title "Data Sharing in Chemistry: Lessons Learned and a Case for Mandating Structured Reaction Data" @default.
- W4383187427 cites W1852306145 @default.
- W4383187427 cites W1944437896 @default.
- W4383187427 cites W1969640557 @default.
- W4383187427 cites W1972773608 @default.
- W4383187427 cites W1976075691 @default.
- W4383187427 cites W1978982822 @default.
- W4383187427 cites W1988208432 @default.
- W4383187427 cites W1996273492 @default.
- W4383187427 cites W2005726891 @default.
- W4383187427 cites W2021395631 @default.
- W4383187427 cites W2022673999 @default.
- W4383187427 cites W2056702184 @default.
- W4383187427 cites W2096560421 @default.
- W4383187427 cites W2110279208 @default.
- W4383187427 cites W2121780366 @default.
- W4383187427 cites W2127553917 @default.
- W4383187427 cites W2153675433 @default.
- W4383187427 cites W2159081899 @default.
- W4383187427 cites W2408658219 @default.
- W4383187427 cites W2557399158 @default.
- W4383187427 cites W2606363443 @default.
- W4383187427 cites W2619484455 @default.
- W4383187427 cites W2747592475 @default.
- W4383187427 cites W2784918212 @default.
- W4383187427 cites W2785942661 @default.
- W4383187427 cites W2799620402 @default.
- W4383187427 cites W2890562229 @default.
- W4383187427 cites W2899070097 @default.
- W4383187427 cites W2901942917 @default.
- W4383187427 cites W2916534270 @default.
- W4383187427 cites W2949064041 @default.
- W4383187427 cites W2968071222 @default.
- W4383187427 cites W3005996817 @default.
- W4383187427 cites W3010145447 @default.
- W4383187427 cites W3015111230 @default.
- W4383187427 cites W3023658436 @default.
- W4383187427 cites W3084673918 @default.
- W4383187427 cites W3094332970 @default.
- W4383187427 cites W3094771832 @default.
- W4383187427 cites W3097145107 @default.
- W4383187427 cites W3101155908 @default.
- W4383187427 cites W3103092523 @default.
- W4383187427 cites W3168661259 @default.
- W4383187427 cites W3170414307 @default.
- W4383187427 cites W3201277766 @default.
- W4383187427 cites W3209726219 @default.
- W4383187427 cites W3213485948 @default.
- W4383187427 cites W4205455490 @default.
- W4383187427 cites W4210374662 @default.
- W4383187427 cites W4211004868 @default.
- W4383187427 cites W4211054902 @default.
- W4383187427 cites W4213239998 @default.
- W4383187427 cites W4226159083 @default.
- W4383187427 cites W4233404883 @default.
- W4383187427 cites W4234718216 @default.
- W4383187427 cites W4239596166 @default.
- W4383187427 cites W4249197915 @default.
- W4383187427 cites W4281860694 @default.
- W4383187427 cites W4283449818 @default.
- W4383187427 cites W4283644061 @default.
- W4383187427 cites W47786891 @default.
- W4383187427 doi "https://doi.org/10.1021/acs.jcim.3c00607" @default.
- W4383187427 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37405398" @default.
- W4383187427 hasPublicationYear "2023" @default.
- W4383187427 type Work @default.
- W4383187427 citedByCount "0" @default.
- W4383187427 crossrefType "journal-article" @default.
- W4383187427 hasAuthorship W4383187427A5037497403 @default.
- W4383187427 hasAuthorship W4383187427A5076162644 @default.
- W4383187427 hasAuthorship W4383187427A5090993508 @default.
- W4383187427 hasBestOaLocation W43831874271 @default.
- W4383187427 hasConcept C136764020 @default.
- W4383187427 hasConcept C142724271 @default.
- W4383187427 hasConcept C147597530 @default.
- W4383187427 hasConcept C17744445 @default.
- W4383187427 hasConcept C185592680 @default.
- W4383187427 hasConcept C191630685 @default.
- W4383187427 hasConcept C199539241 @default.
- W4383187427 hasConcept C20136886 @default.
- W4383187427 hasConcept C202444582 @default.
- W4383187427 hasConcept C204787440 @default.
- W4383187427 hasConcept C2522767166 @default.
- W4383187427 hasConcept C2779965156 @default.
- W4383187427 hasConcept C33923547 @default.
- W4383187427 hasConcept C41008148 @default.
- W4383187427 hasConcept C44210515 @default.
- W4383187427 hasConcept C68762167 @default.
- W4383187427 hasConcept C71924100 @default.
- W4383187427 hasConcept C9652623 @default.
- W4383187427 hasConceptScore W4383187427C136764020 @default.