Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383197066> ?p ?o ?g. }
- W4383197066 endingPage "107103" @default.
- W4383197066 startingPage "107103" @default.
- W4383197066 abstract "This study aims to investigate the feasibility of combined segmentation for the separation of lesions from non-ablated regions, which allows surgeons to easily distinguish, measure, and evaluate the lesion area, thereby improving the quality of high-intensity focused-ultrasound (HIFU) surgery used for the non-invasive tumor treatment. Given that the flexible shape of the Gamma mixture model (GΓMM) fits the complex statistical distribution of samples, a method combining the GΓMM and Bayes framework is constructed for the classification of samples to obtain the segmentation result. An appropriate normalization range and parameters can be used to rapidly obtain a good performance of GΓMM segmentation. The performance values of the proposed method under four metrics (Dice score: 85%, Jaccard coefficient: 75%, recall: 86%, and accuracy: 96%) are better than those of conventional approaches including Otsu and Region growing. Furthermore, the statistical result of sample intensity indicates that the finding of the GΓMM is similar to that obtained by the manual method. These results indicate the stability and reliability of the GΓMM combined with the Bayes framework for the segmentation of HIFU lesions in ultrasound images. The experimental results show the possibility of combining the GΓMM with the Bayes framework to segment lesion areas and evaluate the effect of therapeutic ultrasound." @default.
- W4383197066 created "2023-07-06" @default.
- W4383197066 creator A5002453473 @default.
- W4383197066 creator A5008428605 @default.
- W4383197066 creator A5009579344 @default.
- W4383197066 creator A5011488693 @default.
- W4383197066 creator A5058121523 @default.
- W4383197066 creator A5073463044 @default.
- W4383197066 creator A5077654483 @default.
- W4383197066 creator A5079498254 @default.
- W4383197066 creator A5082893614 @default.
- W4383197066 creator A5089151589 @default.
- W4383197066 date "2023-09-01" @default.
- W4383197066 modified "2023-10-16" @default.
- W4383197066 title "Ultrasound image segmentation using Gamma combined with Bayesian model for focused-ultrasound-surgery lesion recognition" @default.
- W4383197066 cites W1526092665 @default.
- W4383197066 cites W1542514260 @default.
- W4383197066 cites W1751987987 @default.
- W4383197066 cites W1976884818 @default.
- W4383197066 cites W1982141954 @default.
- W4383197066 cites W1982516529 @default.
- W4383197066 cites W1985690171 @default.
- W4383197066 cites W1995084121 @default.
- W4383197066 cites W1996460792 @default.
- W4383197066 cites W2004130535 @default.
- W4383197066 cites W2057289764 @default.
- W4383197066 cites W2067615544 @default.
- W4383197066 cites W2068015987 @default.
- W4383197066 cites W2076608046 @default.
- W4383197066 cites W2090172464 @default.
- W4383197066 cites W2099471313 @default.
- W4383197066 cites W2102570194 @default.
- W4383197066 cites W2110413848 @default.
- W4383197066 cites W2130020900 @default.
- W4383197066 cites W2132513126 @default.
- W4383197066 cites W2143633229 @default.
- W4383197066 cites W2145378482 @default.
- W4383197066 cites W2145730641 @default.
- W4383197066 cites W2290590489 @default.
- W4383197066 cites W2573186037 @default.
- W4383197066 cites W2607363228 @default.
- W4383197066 cites W2792767799 @default.
- W4383197066 cites W2794066305 @default.
- W4383197066 cites W2802157855 @default.
- W4383197066 cites W2898045070 @default.
- W4383197066 cites W2920853940 @default.
- W4383197066 cites W2971896595 @default.
- W4383197066 cites W2977494959 @default.
- W4383197066 cites W3008429678 @default.
- W4383197066 cites W3035546112 @default.
- W4383197066 cites W3102875249 @default.
- W4383197066 cites W3109691444 @default.
- W4383197066 cites W3169301562 @default.
- W4383197066 cites W4210858069 @default.
- W4383197066 cites W4212963571 @default.
- W4383197066 cites W4221135331 @default.
- W4383197066 cites W4223989106 @default.
- W4383197066 cites W4255671871 @default.
- W4383197066 cites W4291004896 @default.
- W4383197066 cites W4311064129 @default.
- W4383197066 doi "https://doi.org/10.1016/j.ultras.2023.107103" @default.
- W4383197066 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37437399" @default.
- W4383197066 hasPublicationYear "2023" @default.
- W4383197066 type Work @default.
- W4383197066 citedByCount "0" @default.
- W4383197066 crossrefType "journal-article" @default.
- W4383197066 hasAuthorship W4383197066A5002453473 @default.
- W4383197066 hasAuthorship W4383197066A5008428605 @default.
- W4383197066 hasAuthorship W4383197066A5009579344 @default.
- W4383197066 hasAuthorship W4383197066A5011488693 @default.
- W4383197066 hasAuthorship W4383197066A5058121523 @default.
- W4383197066 hasAuthorship W4383197066A5073463044 @default.
- W4383197066 hasAuthorship W4383197066A5077654483 @default.
- W4383197066 hasAuthorship W4383197066A5079498254 @default.
- W4383197066 hasAuthorship W4383197066A5082893614 @default.
- W4383197066 hasAuthorship W4383197066A5089151589 @default.
- W4383197066 hasConcept C107673813 @default.
- W4383197066 hasConcept C12267149 @default.
- W4383197066 hasConcept C124504099 @default.
- W4383197066 hasConcept C126838900 @default.
- W4383197066 hasConcept C143753070 @default.
- W4383197066 hasConcept C153180895 @default.
- W4383197066 hasConcept C154945302 @default.
- W4383197066 hasConcept C163892561 @default.
- W4383197066 hasConcept C203519979 @default.
- W4383197066 hasConcept C207201462 @default.
- W4383197066 hasConcept C41008148 @default.
- W4383197066 hasConcept C52001869 @default.
- W4383197066 hasConcept C71924100 @default.
- W4383197066 hasConcept C89600930 @default.
- W4383197066 hasConceptScore W4383197066C107673813 @default.
- W4383197066 hasConceptScore W4383197066C12267149 @default.
- W4383197066 hasConceptScore W4383197066C124504099 @default.
- W4383197066 hasConceptScore W4383197066C126838900 @default.
- W4383197066 hasConceptScore W4383197066C143753070 @default.
- W4383197066 hasConceptScore W4383197066C153180895 @default.
- W4383197066 hasConceptScore W4383197066C154945302 @default.
- W4383197066 hasConceptScore W4383197066C163892561 @default.