Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383213802> ?p ?o ?g. }
- W4383213802 endingPage "117371" @default.
- W4383213802 startingPage "117371" @default.
- W4383213802 abstract "Micro thermoelectric generator (μ-TEG) attracts more and more attention due to its small size and high power density. Many two-dimensional thermoelectric materials with high performance have facilitated the development of μ-TEG. However, the performance of μ-TEG fabricated by these great thermoelectric materials is significantly degraded due to size effect, interfacial effects (include contact effect and boundary effect) and structure effect. To accurately assess the performance degradation degree from material to μ-TEG and guide the device fabrication, an experiment-verified mathematical model considering interfacial and size effects is proposed. Firstly, the phonon/electron temperature distribution in thermoelectric leg of μ-TEG is analyzed to investigate the device-level thermoelectric properties of material. Then based on the device-level thermoelectric properties, the actual power generation performance model of μ-TEG is established to conduct the influence analysis of these effects (boundary, size, contact and structure effects) on material and device. Finally, the thermoelectric leg thickness (Hte) is optimized to realize optimal power generation. The study results reveal that boundary and size effects weaken the device-level thermoelectric properties, and the reduction trend is more obvious when Hte is smaller, especially when Hte ≤ 20 μm. The decrease from the material intrinsic figure of merit ((ZT)m) to the device figure of merit ((ZT)D) is owing to the boundary effect, structure effect and contact effect, and the dominant factor of this decrease changes from structure effect (Hte<7 μm)to contact effect (Hte ≥ 7 μm) as Hte increases, which points to a main optimization direction for (ZT)D for different Hte. As for contact effect, the electrical contact resistivity (re,c) has a more significant impact on weakening the performance of μ-TEG than thermal contact resistivity (rk,c), and their optimization goals are explored (re,c ≤ 5.1 × 10−12 Ω·m2, rk,c ≤ 9.3 × 10−8 K·m2/W). At given electrical and thermal contact resistivity, there exists an optimal Hte for achieving the optimal power generation (Popt) and a large range of Hte for achieving 95%Popt, and the optimal Hte increases with increasing electrical and thermal contact resistivity. This study can reduce the processing difficulty and save time and economic costs of μ-TEG fabrication, which can avoid the blind fabrication of μ-TEG." @default.
- W4383213802 created "2023-07-06" @default.
- W4383213802 creator A5017807946 @default.
- W4383213802 creator A5038367972 @default.
- W4383213802 creator A5041384280 @default.
- W4383213802 creator A5047979132 @default.
- W4383213802 creator A5054440931 @default.
- W4383213802 date "2023-09-01" @default.
- W4383213802 modified "2023-10-07" @default.
- W4383213802 title "Performance degradation analysis and fabrication guidance of μ-TEG from material to device" @default.
- W4383213802 cites W1539448023 @default.
- W4383213802 cites W1981167895 @default.
- W4383213802 cites W1997567773 @default.
- W4383213802 cites W2019848084 @default.
- W4383213802 cites W2022393195 @default.
- W4383213802 cites W2028501475 @default.
- W4383213802 cites W2042056247 @default.
- W4383213802 cites W2051604910 @default.
- W4383213802 cites W2055386557 @default.
- W4383213802 cites W2059186529 @default.
- W4383213802 cites W2077502944 @default.
- W4383213802 cites W2078682292 @default.
- W4383213802 cites W2087153461 @default.
- W4383213802 cites W2091134245 @default.
- W4383213802 cites W2107522232 @default.
- W4383213802 cites W2124026655 @default.
- W4383213802 cites W2169112538 @default.
- W4383213802 cites W2403020391 @default.
- W4383213802 cites W2472866839 @default.
- W4383213802 cites W2557590738 @default.
- W4383213802 cites W2606931915 @default.
- W4383213802 cites W2734936394 @default.
- W4383213802 cites W2783113687 @default.
- W4383213802 cites W2792863340 @default.
- W4383213802 cites W2794089258 @default.
- W4383213802 cites W2799985650 @default.
- W4383213802 cites W2911646420 @default.
- W4383213802 cites W2930771248 @default.
- W4383213802 cites W2942367757 @default.
- W4383213802 cites W2943184317 @default.
- W4383213802 cites W2972119632 @default.
- W4383213802 cites W2993303088 @default.
- W4383213802 cites W3008446731 @default.
- W4383213802 cites W3014695154 @default.
- W4383213802 cites W3044018636 @default.
- W4383213802 cites W3108186213 @default.
- W4383213802 cites W3132108215 @default.
- W4383213802 cites W317736956 @default.
- W4383213802 cites W3195123430 @default.
- W4383213802 cites W4200122137 @default.
- W4383213802 cites W4210944684 @default.
- W4383213802 cites W4224979717 @default.
- W4383213802 cites W4281808659 @default.
- W4383213802 cites W4292491254 @default.
- W4383213802 cites W4308532820 @default.
- W4383213802 cites W4321354341 @default.
- W4383213802 doi "https://doi.org/10.1016/j.enconman.2023.117371" @default.
- W4383213802 hasPublicationYear "2023" @default.
- W4383213802 type Work @default.
- W4383213802 citedByCount "0" @default.
- W4383213802 crossrefType "journal-article" @default.
- W4383213802 hasAuthorship W4383213802A5017807946 @default.
- W4383213802 hasAuthorship W4383213802A5038367972 @default.
- W4383213802 hasAuthorship W4383213802A5041384280 @default.
- W4383213802 hasAuthorship W4383213802A5047979132 @default.
- W4383213802 hasAuthorship W4383213802A5054440931 @default.
- W4383213802 hasConcept C117127486 @default.
- W4383213802 hasConcept C121332964 @default.
- W4383213802 hasConcept C127413603 @default.
- W4383213802 hasConcept C130277099 @default.
- W4383213802 hasConcept C136525101 @default.
- W4383213802 hasConcept C142724271 @default.
- W4383213802 hasConcept C159985019 @default.
- W4383213802 hasConcept C192562407 @default.
- W4383213802 hasConcept C204787440 @default.
- W4383213802 hasConcept C207365445 @default.
- W4383213802 hasConcept C33373654 @default.
- W4383213802 hasConcept C49040817 @default.
- W4383213802 hasConcept C61696701 @default.
- W4383213802 hasConcept C63024428 @default.
- W4383213802 hasConcept C71924100 @default.
- W4383213802 hasConcept C78519656 @default.
- W4383213802 hasConcept C97346530 @default.
- W4383213802 hasConcept C97355855 @default.
- W4383213802 hasConceptScore W4383213802C117127486 @default.
- W4383213802 hasConceptScore W4383213802C121332964 @default.
- W4383213802 hasConceptScore W4383213802C127413603 @default.
- W4383213802 hasConceptScore W4383213802C130277099 @default.
- W4383213802 hasConceptScore W4383213802C136525101 @default.
- W4383213802 hasConceptScore W4383213802C142724271 @default.
- W4383213802 hasConceptScore W4383213802C159985019 @default.
- W4383213802 hasConceptScore W4383213802C192562407 @default.
- W4383213802 hasConceptScore W4383213802C204787440 @default.
- W4383213802 hasConceptScore W4383213802C207365445 @default.
- W4383213802 hasConceptScore W4383213802C33373654 @default.
- W4383213802 hasConceptScore W4383213802C49040817 @default.
- W4383213802 hasConceptScore W4383213802C61696701 @default.
- W4383213802 hasConceptScore W4383213802C63024428 @default.