Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383216968> ?p ?o ?g. }
- W4383216968 endingPage "e17934" @default.
- W4383216968 startingPage "e17934" @default.
- W4383216968 abstract "In response to the unprecedented global healthcare crisis of the COVID-19 pandemic, the scientific community has joined forces to tackle the challenges and prepare for future pandemics. Multiple modalities of data have been investigated to understand the nature of COVID-19. In this paper, MIDRC investigators present an overview of the state-of-the-art development of multimodal machine learning for COVID-19 and model assessment considerations for future studies. We begin with a discussion of the lessons learned from radiogenomic studies for cancer diagnosis. We then summarize the multi-modality COVID-19 data investigated in the literature including symptoms and other clinical data, laboratory tests, imaging, pathology, physiology, and other omics data. Publicly available multimodal COVID-19 data provided by MIDRC and other sources are summarized. After an overview of machine learning developments using multimodal data for COVID-19, we present our perspectives on the future development of multimodal machine learning models for COVID-19." @default.
- W4383216968 created "2023-07-06" @default.
- W4383216968 creator A5013024206 @default.
- W4383216968 creator A5013898624 @default.
- W4383216968 creator A5049042648 @default.
- W4383216968 creator A5056555647 @default.
- W4383216968 creator A5076598220 @default.
- W4383216968 creator A5078274543 @default.
- W4383216968 creator A5086952550 @default.
- W4383216968 date "2023-07-01" @default.
- W4383216968 modified "2023-10-14" @default.
- W4383216968 title "Machine learning with multimodal data for COVID-19" @default.
- W4383216968 cites W1687542094 @default.
- W4383216968 cites W1969604869 @default.
- W4383216968 cites W2019499867 @default.
- W4383216968 cites W2052040374 @default.
- W4383216968 cites W2074774889 @default.
- W4383216968 cites W2100324136 @default.
- W4383216968 cites W2103004421 @default.
- W4383216968 cites W2111389142 @default.
- W4383216968 cites W2119139024 @default.
- W4383216968 cites W2166401924 @default.
- W4383216968 cites W2172058373 @default.
- W4383216968 cites W2184968530 @default.
- W4383216968 cites W2191186679 @default.
- W4383216968 cites W2191672666 @default.
- W4383216968 cites W2191988973 @default.
- W4383216968 cites W2252911892 @default.
- W4383216968 cites W2266371330 @default.
- W4383216968 cites W2346265746 @default.
- W4383216968 cites W2549173848 @default.
- W4383216968 cites W2584323939 @default.
- W4383216968 cites W2612420615 @default.
- W4383216968 cites W2619383789 @default.
- W4383216968 cites W2736731826 @default.
- W4383216968 cites W2765933949 @default.
- W4383216968 cites W2899440009 @default.
- W4383216968 cites W2907554860 @default.
- W4383216968 cites W2910380368 @default.
- W4383216968 cites W2954041497 @default.
- W4383216968 cites W2954499361 @default.
- W4383216968 cites W3010496206 @default.
- W4383216968 cites W3013294478 @default.
- W4383216968 cites W3014524604 @default.
- W4383216968 cites W3017389694 @default.
- W4383216968 cites W3021298060 @default.
- W4383216968 cites W3021817101 @default.
- W4383216968 cites W3024339709 @default.
- W4383216968 cites W3025878800 @default.
- W4383216968 cites W3038146752 @default.
- W4383216968 cites W3081119382 @default.
- W4383216968 cites W3083198700 @default.
- W4383216968 cites W3094595351 @default.
- W4383216968 cites W3095016916 @default.
- W4383216968 cites W3096163083 @default.
- W4383216968 cites W3104739447 @default.
- W4383216968 cites W3109728240 @default.
- W4383216968 cites W3119298422 @default.
- W4383216968 cites W3127784112 @default.
- W4383216968 cites W3136933888 @default.
- W4383216968 cites W3136955306 @default.
- W4383216968 cites W3164012388 @default.
- W4383216968 cites W3171849353 @default.
- W4383216968 cites W3197481497 @default.
- W4383216968 cites W3199407837 @default.
- W4383216968 cites W3199608350 @default.
- W4383216968 cites W3200263729 @default.
- W4383216968 cites W3201109340 @default.
- W4383216968 cites W3205374395 @default.
- W4383216968 cites W3205594709 @default.
- W4383216968 cites W3210957001 @default.
- W4383216968 cites W4211011190 @default.
- W4383216968 cites W4214931945 @default.
- W4383216968 cites W4220784902 @default.
- W4383216968 cites W4282917323 @default.
- W4383216968 cites W4287510022 @default.
- W4383216968 cites W4291021272 @default.
- W4383216968 cites W4293109418 @default.
- W4383216968 cites W4295308278 @default.
- W4383216968 cites W4302304621 @default.
- W4383216968 cites W4366998893 @default.
- W4383216968 doi "https://doi.org/10.1016/j.heliyon.2023.e17934" @default.
- W4383216968 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37483733" @default.
- W4383216968 hasPublicationYear "2023" @default.
- W4383216968 type Work @default.
- W4383216968 citedByCount "0" @default.
- W4383216968 crossrefType "journal-article" @default.
- W4383216968 hasAuthorship W4383216968A5013024206 @default.
- W4383216968 hasAuthorship W4383216968A5013898624 @default.
- W4383216968 hasAuthorship W4383216968A5049042648 @default.
- W4383216968 hasAuthorship W4383216968A5056555647 @default.
- W4383216968 hasAuthorship W4383216968A5076598220 @default.
- W4383216968 hasAuthorship W4383216968A5078274543 @default.
- W4383216968 hasAuthorship W4383216968A5086952550 @default.
- W4383216968 hasBestOaLocation W43832169681 @default.
- W4383216968 hasConcept C116675565 @default.
- W4383216968 hasConcept C136764020 @default.
- W4383216968 hasConcept C142724271 @default.