Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383218104> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4383218104 endingPage "6135" @default.
- W4383218104 startingPage "6122" @default.
- W4383218104 abstract "Abstract This study presents an innovative approach utilizing Artificial Neural Network ( ANN ) strategies to evaluate the energy absorption capabilities of eco‐friendly rubber crumb/kenaf composites subjected to low‐velocity impact loads. The primary objectives of this research were to assess the energy absorption characteristics of these sustainable composites, understand their mechanical behavior under the impact, and provide valuable insights into their potential applications. To achieve these objectives, an experimental methodology was employed. Rubber crumb/kenaf composites with varying compositions were prepared, and low‐velocity impact tests were conducted using a drop‐weight impact testing apparatus to assess their energy absorption behavior and these parameters were used as inputs for training the ANN models. The weight percentage of waste tire rubber particle ( WTRP ), type of impactor and impact energies are considered as input data, whereas the absorbed energy is treated as the output. Through the advanced ANN strategies, accurate predictions of energy absorption performance were achieved for the rubber crumb/kenaf composites. The Levenberg–Marquardt optimisation algorithm with ten neurons and a tangent sigmoid activation function is used to train the ANN model. The trained ANN model is tested on an unseen dataset, different from the training data. It is shown to accurately predict the energy absorption characteristics of WTRP / KRE composites with a maximum error of 4.54%. The results revealed that the composite's energy absorption capabilities were influenced by the ratio of rubber crumb to kenaf, as well as the impact velocity. Additionally, the ANN models demonstrated excellent predictive capabilities, enabling efficient estimation of energy absorption behavior. The significance of these results lies in the potential applications of eco‐friendly rubber crumb/kenaf composites. By understanding their energy absorption characteristics, these composites can be effectively utilized in various industries. For instance, they could be employed in automotive parts manufacturing to enhance occupant safety during low‐velocity impact events. Furthermore, these composites can find applications in sports equipment, protective gear, and other impact‐prone products, contributing to sustainable and environmentally friendly materials. It is believed that by adopting the proposed ANN methodology, the experimentation costs and time can be significantly reduced without compromising the accuracy of the results. The obtained results provide valuable insights into the mechanical behavior of these sustainable composites and open avenues for their implementation in diverse industries where impact resistance is crucial Highlights Development of sustainable Rubber crumb/kenaf composites Application of advanced ANN based predictive assessment of the impact response Parametric study of impactor shape and height of impact is performed The damage mechanism contributing to energy absorption is micrographically studied" @default.
- W4383218104 created "2023-07-06" @default.
- W4383218104 creator A5003888710 @default.
- W4383218104 creator A5006163487 @default.
- W4383218104 creator A5066638350 @default.
- W4383218104 date "2023-07-05" @default.
- W4383218104 modified "2023-10-16" @default.
- W4383218104 title "Evaluating energy absorption of sustainable rubber crumb/kenaf composites through artificial neural network strategies for <scp>low‐velocity</scp> impact loads" @default.
- W4383218104 cites W1932552562 @default.
- W4383218104 cites W2009982905 @default.
- W4383218104 cites W2027121119 @default.
- W4383218104 cites W2081449175 @default.
- W4383218104 cites W2345760805 @default.
- W4383218104 cites W2748183895 @default.
- W4383218104 cites W2784865445 @default.
- W4383218104 cites W2801520088 @default.
- W4383218104 cites W2899923188 @default.
- W4383218104 cites W2901062302 @default.
- W4383218104 cites W2910341243 @default.
- W4383218104 cites W2916820329 @default.
- W4383218104 cites W2939752320 @default.
- W4383218104 cites W2955293051 @default.
- W4383218104 cites W2968585420 @default.
- W4383218104 cites W2996686410 @default.
- W4383218104 cites W3007879572 @default.
- W4383218104 cites W3092312941 @default.
- W4383218104 cites W3136124392 @default.
- W4383218104 cites W3197225819 @default.
- W4383218104 cites W3205624801 @default.
- W4383218104 cites W3214196672 @default.
- W4383218104 cites W97579039 @default.
- W4383218104 doi "https://doi.org/10.1002/pc.27551" @default.
- W4383218104 hasPublicationYear "2023" @default.
- W4383218104 type Work @default.
- W4383218104 citedByCount "0" @default.
- W4383218104 crossrefType "journal-article" @default.
- W4383218104 hasAuthorship W4383218104A5003888710 @default.
- W4383218104 hasAuthorship W4383218104A5006163487 @default.
- W4383218104 hasAuthorship W4383218104A5066638350 @default.
- W4383218104 hasConcept C119857082 @default.
- W4383218104 hasConcept C125287762 @default.
- W4383218104 hasConcept C159985019 @default.
- W4383218104 hasConcept C176933379 @default.
- W4383218104 hasConcept C192562407 @default.
- W4383218104 hasConcept C2776122628 @default.
- W4383218104 hasConcept C2778328744 @default.
- W4383218104 hasConcept C41008148 @default.
- W4383218104 hasConcept C50644808 @default.
- W4383218104 hasConcept C519885992 @default.
- W4383218104 hasConceptScore W4383218104C119857082 @default.
- W4383218104 hasConceptScore W4383218104C125287762 @default.
- W4383218104 hasConceptScore W4383218104C159985019 @default.
- W4383218104 hasConceptScore W4383218104C176933379 @default.
- W4383218104 hasConceptScore W4383218104C192562407 @default.
- W4383218104 hasConceptScore W4383218104C2776122628 @default.
- W4383218104 hasConceptScore W4383218104C2778328744 @default.
- W4383218104 hasConceptScore W4383218104C41008148 @default.
- W4383218104 hasConceptScore W4383218104C50644808 @default.
- W4383218104 hasConceptScore W4383218104C519885992 @default.
- W4383218104 hasFunder F4320320006 @default.
- W4383218104 hasFunder F4320334771 @default.
- W4383218104 hasIssue "9" @default.
- W4383218104 hasLocation W43832181041 @default.
- W4383218104 hasOpenAccess W4383218104 @default.
- W4383218104 hasPrimaryLocation W43832181041 @default.
- W4383218104 hasRelatedWork W2012053470 @default.
- W4383218104 hasRelatedWork W2055057102 @default.
- W4383218104 hasRelatedWork W2374422896 @default.
- W4383218104 hasRelatedWork W2380293314 @default.
- W4383218104 hasRelatedWork W2492418162 @default.
- W4383218104 hasRelatedWork W2592754453 @default.
- W4383218104 hasRelatedWork W2807728369 @default.
- W4383218104 hasRelatedWork W2943188944 @default.
- W4383218104 hasRelatedWork W2992369750 @default.
- W4383218104 hasRelatedWork W3082440218 @default.
- W4383218104 hasVolume "44" @default.
- W4383218104 isParatext "false" @default.
- W4383218104 isRetracted "false" @default.
- W4383218104 workType "article" @default.