Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383219984> ?p ?o ?g. }
- W4383219984 endingPage "79479" @default.
- W4383219984 startingPage "79466" @default.
- W4383219984 abstract "The echo state network (ESN) is a cutting-edge reservoir computing technique designed to handle time-dependent data, making it highly effective for addressing time series prediction tasks. ESN inherits the more precise design of standard neural networks and the relatively simple learning process and has a strong computing capacity for solving nonlinear problems. It can disseminate low-dimensional information cues to high-dimensional areas enabling extracting data. However, this study has proven that not all reservoir output dimensions directly impact model generalization. This study desires to enhance the ESN model’s generalization abilities by decreasing the redundant reservoir output feature. A remarkable hybrid model is proposed that optimizes the ESN output association through feature selection. This model is called the binary improved gravitational search algorithm (BIGSA) echo state network (BIGSA-ESN). BIGSA’s feature selection approach complements the ESN output connection architecture. In this study, evaluation was performed using root mean square error (RMSE). The experimental findings on the Lorenz and Mackey–Glass benchmark time-series datasets demonstrate that the proposed technique outperforms conventional evolutionary methods. Moreover, empirical findings on predicting a significant water quality parameter from the wastewater treatment process (WWTP) dataset demonstrate that the proposed ensemble of BIGSA models performs very well in real-world scenarios." @default.
- W4383219984 created "2023-07-06" @default.
- W4383219984 creator A5007752686 @default.
- W4383219984 creator A5041095851 @default.
- W4383219984 creator A5048466370 @default.
- W4383219984 creator A5051374204 @default.
- W4383219984 creator A5055052519 @default.
- W4383219984 date "2023-01-01" @default.
- W4383219984 modified "2023-10-18" @default.
- W4383219984 title "Enhancing Time Series Forecasting With an Optimized Binary Gravitational Search Algorithm for Echo State Networks" @default.
- W4383219984 cites W1036981403 @default.
- W4383219984 cites W1869683314 @default.
- W4383219984 cites W1975479076 @default.
- W4383219984 cites W1977587074 @default.
- W4383219984 cites W1978887204 @default.
- W4383219984 cites W1998726167 @default.
- W4383219984 cites W2004707870 @default.
- W4383219984 cites W2041645455 @default.
- W4383219984 cites W2044371115 @default.
- W4383219984 cites W2055631528 @default.
- W4383219984 cites W2072955302 @default.
- W4383219984 cites W2078094465 @default.
- W4383219984 cites W2081028405 @default.
- W4383219984 cites W2106595237 @default.
- W4383219984 cites W2137983211 @default.
- W4383219984 cites W2153787847 @default.
- W4383219984 cites W2159682675 @default.
- W4383219984 cites W2171523977 @default.
- W4383219984 cites W2240900597 @default.
- W4383219984 cites W2585008544 @default.
- W4383219984 cites W2601096366 @default.
- W4383219984 cites W2602538967 @default.
- W4383219984 cites W2749938135 @default.
- W4383219984 cites W2773462955 @default.
- W4383219984 cites W2785916359 @default.
- W4383219984 cites W2794016625 @default.
- W4383219984 cites W2796601240 @default.
- W4383219984 cites W2801348310 @default.
- W4383219984 cites W2802465900 @default.
- W4383219984 cites W2884367825 @default.
- W4383219984 cites W2888832039 @default.
- W4383219984 cites W2888909347 @default.
- W4383219984 cites W2901263206 @default.
- W4383219984 cites W2968167352 @default.
- W4383219984 cites W2972858918 @default.
- W4383219984 cites W2995139801 @default.
- W4383219984 cites W3000261336 @default.
- W4383219984 cites W3175821757 @default.
- W4383219984 cites W3187035773 @default.
- W4383219984 cites W3191903242 @default.
- W4383219984 cites W4225336589 @default.
- W4383219984 cites W4283590603 @default.
- W4383219984 cites W4293210519 @default.
- W4383219984 cites W4293216423 @default.
- W4383219984 cites W4296354465 @default.
- W4383219984 cites W4306403171 @default.
- W4383219984 cites W4313490273 @default.
- W4383219984 cites W4313583341 @default.
- W4383219984 cites W4379620844 @default.
- W4383219984 doi "https://doi.org/10.1109/access.2023.3292543" @default.
- W4383219984 hasPublicationYear "2023" @default.
- W4383219984 type Work @default.
- W4383219984 citedByCount "1" @default.
- W4383219984 countsByYear W43832199842023 @default.
- W4383219984 crossrefType "journal-article" @default.
- W4383219984 hasAuthorship W4383219984A5007752686 @default.
- W4383219984 hasAuthorship W4383219984A5041095851 @default.
- W4383219984 hasAuthorship W4383219984A5048466370 @default.
- W4383219984 hasAuthorship W4383219984A5051374204 @default.
- W4383219984 hasAuthorship W4383219984A5055052519 @default.
- W4383219984 hasBestOaLocation W43832199841 @default.
- W4383219984 hasConcept C105795698 @default.
- W4383219984 hasConcept C11413529 @default.
- W4383219984 hasConcept C119857082 @default.
- W4383219984 hasConcept C124101348 @default.
- W4383219984 hasConcept C13280743 @default.
- W4383219984 hasConcept C134306372 @default.
- W4383219984 hasConcept C135796866 @default.
- W4383219984 hasConcept C138885662 @default.
- W4383219984 hasConcept C139945424 @default.
- W4383219984 hasConcept C143724316 @default.
- W4383219984 hasConcept C147168706 @default.
- W4383219984 hasConcept C148483581 @default.
- W4383219984 hasConcept C151406439 @default.
- W4383219984 hasConcept C151730666 @default.
- W4383219984 hasConcept C154945302 @default.
- W4383219984 hasConcept C172025690 @default.
- W4383219984 hasConcept C177148314 @default.
- W4383219984 hasConcept C185798385 @default.
- W4383219984 hasConcept C205649164 @default.
- W4383219984 hasConcept C2776401178 @default.
- W4383219984 hasConcept C33923547 @default.
- W4383219984 hasConcept C41008148 @default.
- W4383219984 hasConcept C41895202 @default.
- W4383219984 hasConcept C48372109 @default.
- W4383219984 hasConcept C50644808 @default.
- W4383219984 hasConcept C86803240 @default.
- W4383219984 hasConcept C94375191 @default.