Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383223669> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4383223669 endingPage "128992" @default.
- W4383223669 startingPage "128992" @default.
- W4383223669 abstract "High dimensional quantum entanglement based on orbital angular momentum (OAM) can provide infinite freedom theoretically, providing a significant improvement on the capacity of the quantum communication. However, the vortex beam that carries OAM signal can be easily distorted by atmospheric turbulence and can degrade the performance of the system. Consequently, for the operation, administration and maintenance of quantum system, an accurate digital twin model of the turbulent channel is necessary. Digital twin model is a mathematical model which can reflect the influence of atmospheric channel on quantum system by theoretical analysis. Nevertheless, it is challenging to achieve for the complex mechanism of atmospheric turbulence. To address this problem, deep learning (DL) techniques have been studied recently. Whereas, for the training of DL, a massive number of labeled samples are needed, i.e., the actual free-space channel, which are hard to be obtained in practical systems. The pool generalization also hinders the use of these DL-based algorithms in practice. To overcome the above challenges, we propose a self-supervised DL algorithm, which does not need any labeled samples in advance, meaning the training of the algorithm can be restarted any time once the environment changes. Compared with previous studies, the proposed algorithm can better suite as the digital twin of the turbulent channel. To verify the performance of the proposed algorithm, we perform extensive verification, whose results demonstrate the superior performance of the proposed method." @default.
- W4383223669 created "2023-07-06" @default.
- W4383223669 creator A5002656751 @default.
- W4383223669 creator A5006908434 @default.
- W4383223669 creator A5017033890 @default.
- W4383223669 creator A5020174114 @default.
- W4383223669 creator A5033780490 @default.
- W4383223669 creator A5048002685 @default.
- W4383223669 creator A5052349888 @default.
- W4383223669 creator A5060002817 @default.
- W4383223669 creator A5092404613 @default.
- W4383223669 date "2023-09-01" @default.
- W4383223669 modified "2023-10-16" @default.
- W4383223669 title "Digital twin of the atmospheric turbulence channel based on self-supervised deep learning algorithm" @default.
- W4383223669 cites W1994566769 @default.
- W4383223669 cites W2008493311 @default.
- W4383223669 cites W2015449116 @default.
- W4383223669 cites W2022575522 @default.
- W4383223669 cites W2026179698 @default.
- W4383223669 cites W2040340473 @default.
- W4383223669 cites W2059157514 @default.
- W4383223669 cites W2071638202 @default.
- W4383223669 cites W2096056311 @default.
- W4383223669 cites W2109815475 @default.
- W4383223669 cites W2120583949 @default.
- W4383223669 cites W2170199957 @default.
- W4383223669 cites W255611753 @default.
- W4383223669 cites W2887470706 @default.
- W4383223669 cites W2897264299 @default.
- W4383223669 cites W2907239809 @default.
- W4383223669 cites W2929913489 @default.
- W4383223669 cites W2947732158 @default.
- W4383223669 cites W2967057726 @default.
- W4383223669 cites W2972218742 @default.
- W4383223669 cites W3008209830 @default.
- W4383223669 cites W3100688035 @default.
- W4383223669 cites W3216441514 @default.
- W4383223669 doi "https://doi.org/10.1016/j.physleta.2023.128992" @default.
- W4383223669 hasPublicationYear "2023" @default.
- W4383223669 type Work @default.
- W4383223669 citedByCount "0" @default.
- W4383223669 crossrefType "journal-article" @default.
- W4383223669 hasAuthorship W4383223669A5002656751 @default.
- W4383223669 hasAuthorship W4383223669A5006908434 @default.
- W4383223669 hasAuthorship W4383223669A5017033890 @default.
- W4383223669 hasAuthorship W4383223669A5020174114 @default.
- W4383223669 hasAuthorship W4383223669A5033780490 @default.
- W4383223669 hasAuthorship W4383223669A5048002685 @default.
- W4383223669 hasAuthorship W4383223669A5052349888 @default.
- W4383223669 hasAuthorship W4383223669A5060002817 @default.
- W4383223669 hasAuthorship W4383223669A5092404613 @default.
- W4383223669 hasConcept C11413529 @default.
- W4383223669 hasConcept C121332964 @default.
- W4383223669 hasConcept C127162648 @default.
- W4383223669 hasConcept C134306372 @default.
- W4383223669 hasConcept C154945302 @default.
- W4383223669 hasConcept C177148314 @default.
- W4383223669 hasConcept C196558001 @default.
- W4383223669 hasConcept C208081375 @default.
- W4383223669 hasConcept C33923547 @default.
- W4383223669 hasConcept C41008148 @default.
- W4383223669 hasConcept C57879066 @default.
- W4383223669 hasConcept C62520636 @default.
- W4383223669 hasConcept C76155785 @default.
- W4383223669 hasConceptScore W4383223669C11413529 @default.
- W4383223669 hasConceptScore W4383223669C121332964 @default.
- W4383223669 hasConceptScore W4383223669C127162648 @default.
- W4383223669 hasConceptScore W4383223669C134306372 @default.
- W4383223669 hasConceptScore W4383223669C154945302 @default.
- W4383223669 hasConceptScore W4383223669C177148314 @default.
- W4383223669 hasConceptScore W4383223669C196558001 @default.
- W4383223669 hasConceptScore W4383223669C208081375 @default.
- W4383223669 hasConceptScore W4383223669C33923547 @default.
- W4383223669 hasConceptScore W4383223669C41008148 @default.
- W4383223669 hasConceptScore W4383223669C57879066 @default.
- W4383223669 hasConceptScore W4383223669C62520636 @default.
- W4383223669 hasConceptScore W4383223669C76155785 @default.
- W4383223669 hasLocation W43832236691 @default.
- W4383223669 hasOpenAccess W4383223669 @default.
- W4383223669 hasPrimaryLocation W43832236691 @default.
- W4383223669 hasRelatedWork W1630076647 @default.
- W4383223669 hasRelatedWork W1995243476 @default.
- W4383223669 hasRelatedWork W2048963458 @default.
- W4383223669 hasRelatedWork W2051487156 @default.
- W4383223669 hasRelatedWork W2073681303 @default.
- W4383223669 hasRelatedWork W2080152487 @default.
- W4383223669 hasRelatedWork W2317200988 @default.
- W4383223669 hasRelatedWork W2359952343 @default.
- W4383223669 hasRelatedWork W2371138613 @default.
- W4383223669 hasRelatedWork W43109613 @default.
- W4383223669 hasVolume "481" @default.
- W4383223669 isParatext "false" @default.
- W4383223669 isRetracted "false" @default.
- W4383223669 workType "article" @default.