Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383223835> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4383223835 endingPage "278" @default.
- W4383223835 startingPage "266" @default.
- W4383223835 abstract "This chapter examines how Python can assist in predicting type 2 diabetes using insulin DNA sequences, given the substantial problem that biologists face in objectively evaluating diverse biological characteristics of DNA sequences. The chapter highlights Python's various libraries, such as NumPy, Pandas, and Scikit-learn, for data handling, analysis, and machine learning, as well as visualization tools, such as Matplotlib and Seaborn, to help researchers understand the relationship between different DNA sequences and type 2 diabetes. Additionally, Python's ease of integration with other bioinformatics tools, like BLAST, EMBOSS, and ClustalW, can help identify DNA markers that could aid in predicting type 2 diabetes. In addition, the initiative tries to identify unique gene variants of insulin protein that contribute to diabetes prognosis and investigates the risk factors connected with the discovered gene variants. In conclusion, Python's versatility and functionality make it a valuable tool for researchers studying insulin DNA sequences and type 2 diabetes prediction." @default.
- W4383223835 created "2023-07-06" @default.
- W4383223835 creator A5044771843 @default.
- W4383223835 creator A5057061238 @default.
- W4383223835 date "2023-06-30" @default.
- W4383223835 modified "2023-09-27" @default.
- W4383223835 title "Python's Role in Predicting Type 2 Diabetes Using Insulin DNA Sequence" @default.
- W4383223835 cites W2915626801 @default.
- W4383223835 cites W2959924472 @default.
- W4383223835 cites W3013727888 @default.
- W4383223835 cites W3024506005 @default.
- W4383223835 cites W3045879969 @default.
- W4383223835 cites W3082099734 @default.
- W4383223835 cites W3110518419 @default.
- W4383223835 cites W3130360382 @default.
- W4383223835 cites W3140854437 @default.
- W4383223835 cites W4212853165 @default.
- W4383223835 cites W4226018502 @default.
- W4383223835 cites W4310026916 @default.
- W4383223835 cites W4319067148 @default.
- W4383223835 cites W4319833056 @default.
- W4383223835 doi "https://doi.org/10.4018/978-1-6684-7100-5.ch014" @default.
- W4383223835 hasPublicationYear "2023" @default.
- W4383223835 type Work @default.
- W4383223835 citedByCount "0" @default.
- W4383223835 crossrefType "book-chapter" @default.
- W4383223835 hasAuthorship W4383223835A5044771843 @default.
- W4383223835 hasAuthorship W4383223835A5057061238 @default.
- W4383223835 hasConcept C134018914 @default.
- W4383223835 hasConcept C154945302 @default.
- W4383223835 hasConcept C199360897 @default.
- W4383223835 hasConcept C2777180221 @default.
- W4383223835 hasConcept C36464697 @default.
- W4383223835 hasConcept C41008148 @default.
- W4383223835 hasConcept C51679486 @default.
- W4383223835 hasConcept C519991488 @default.
- W4383223835 hasConcept C54355233 @default.
- W4383223835 hasConcept C552990157 @default.
- W4383223835 hasConcept C555293320 @default.
- W4383223835 hasConcept C60644358 @default.
- W4383223835 hasConcept C70721500 @default.
- W4383223835 hasConcept C86803240 @default.
- W4383223835 hasConceptScore W4383223835C134018914 @default.
- W4383223835 hasConceptScore W4383223835C154945302 @default.
- W4383223835 hasConceptScore W4383223835C199360897 @default.
- W4383223835 hasConceptScore W4383223835C2777180221 @default.
- W4383223835 hasConceptScore W4383223835C36464697 @default.
- W4383223835 hasConceptScore W4383223835C41008148 @default.
- W4383223835 hasConceptScore W4383223835C51679486 @default.
- W4383223835 hasConceptScore W4383223835C519991488 @default.
- W4383223835 hasConceptScore W4383223835C54355233 @default.
- W4383223835 hasConceptScore W4383223835C552990157 @default.
- W4383223835 hasConceptScore W4383223835C555293320 @default.
- W4383223835 hasConceptScore W4383223835C60644358 @default.
- W4383223835 hasConceptScore W4383223835C70721500 @default.
- W4383223835 hasConceptScore W4383223835C86803240 @default.
- W4383223835 hasLocation W43832238351 @default.
- W4383223835 hasOpenAccess W4383223835 @default.
- W4383223835 hasPrimaryLocation W43832238351 @default.
- W4383223835 hasRelatedWork W2090070787 @default.
- W4383223835 hasRelatedWork W2327204559 @default.
- W4383223835 hasRelatedWork W2520543580 @default.
- W4383223835 hasRelatedWork W2529681551 @default.
- W4383223835 hasRelatedWork W2943393881 @default.
- W4383223835 hasRelatedWork W2955802579 @default.
- W4383223835 hasRelatedWork W3017187763 @default.
- W4383223835 hasRelatedWork W3162303662 @default.
- W4383223835 hasRelatedWork W4232504361 @default.
- W4383223835 hasRelatedWork W4245752324 @default.
- W4383223835 isParatext "false" @default.
- W4383223835 isRetracted "false" @default.
- W4383223835 workType "book-chapter" @default.