Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383262677> ?p ?o ?g. }
- W4383262677 endingPage "2949" @default.
- W4383262677 startingPage "2949" @default.
- W4383262677 abstract "Aspect-based sentiment analysis (ABSA) is a crucial fine-grained sentiment analysis task that aims to determine sentiment polarity in a specific aspect term. Recent research has advanced prediction accuracy by pre-training models on ABSA tasks. However, due to the lack of fine-grained data, those models cannot be trained effectively. In this paper, we propose the cross-domain generative data augmentation framework (CDGDA) that utilizes a generation model to produce in-domain, fine-grained sentences by learning from similar, coarse-grained datasets out-of-domain. To generate fine-grained sentences, we guide the generation model using two prompt methods: the aspect replacement and the aspect–sentiment pair replacement. We also refine the quality of generated sentences by an entropy minimization filter. Experimental results on three public datasets show that our framework outperforms most baseline methods and other data augmentation methods, thereby demonstrating its efficacy." @default.
- W4383262677 created "2023-07-06" @default.
- W4383262677 creator A5014219387 @default.
- W4383262677 creator A5028813886 @default.
- W4383262677 creator A5036803265 @default.
- W4383262677 creator A5057812265 @default.
- W4383262677 creator A5064435064 @default.
- W4383262677 creator A5079448948 @default.
- W4383262677 date "2023-07-04" @default.
- W4383262677 modified "2023-10-16" @default.
- W4383262677 title "A Cross-Domain Generative Data Augmentation Framework for Aspect-Based Sentiment Analysis" @default.
- W4383262677 cites W2064675550 @default.
- W4383262677 cites W2251124635 @default.
- W4383262677 cites W2251648804 @default.
- W4383262677 cites W2252024663 @default.
- W4383262677 cites W2604356472 @default.
- W4383262677 cites W2757541972 @default.
- W4383262677 cites W2891778157 @default.
- W4383262677 cites W2916132663 @default.
- W4383262677 cites W2963216553 @default.
- W4383262677 cites W2963240575 @default.
- W4383262677 cites W2970748008 @default.
- W4383262677 cites W2971296908 @default.
- W4383262677 cites W2998446468 @default.
- W4383262677 cites W3034999214 @default.
- W4383262677 cites W3035407080 @default.
- W4383262677 cites W3035529900 @default.
- W4383262677 cites W3088107006 @default.
- W4383262677 cites W3100180738 @default.
- W4383262677 cites W3173777717 @default.
- W4383262677 cites W3174493546 @default.
- W4383262677 cites W3174994995 @default.
- W4383262677 cites W3176038554 @default.
- W4383262677 cites W3176719207 @default.
- W4383262677 cites W3202729335 @default.
- W4383262677 cites W3209701493 @default.
- W4383262677 cites W4221159394 @default.
- W4383262677 cites W4224225413 @default.
- W4383262677 cites W4225590069 @default.
- W4383262677 cites W4280509971 @default.
- W4383262677 cites W4285229306 @default.
- W4383262677 cites W4287890001 @default.
- W4383262677 cites W4297971002 @default.
- W4383262677 cites W4312908198 @default.
- W4383262677 doi "https://doi.org/10.3390/electronics12132949" @default.
- W4383262677 hasPublicationYear "2023" @default.
- W4383262677 type Work @default.
- W4383262677 citedByCount "0" @default.
- W4383262677 crossrefType "journal-article" @default.
- W4383262677 hasAuthorship W4383262677A5014219387 @default.
- W4383262677 hasAuthorship W4383262677A5028813886 @default.
- W4383262677 hasAuthorship W4383262677A5036803265 @default.
- W4383262677 hasAuthorship W4383262677A5057812265 @default.
- W4383262677 hasAuthorship W4383262677A5064435064 @default.
- W4383262677 hasAuthorship W4383262677A5079448948 @default.
- W4383262677 hasBestOaLocation W43832626771 @default.
- W4383262677 hasConcept C106131492 @default.
- W4383262677 hasConcept C106301342 @default.
- W4383262677 hasConcept C119857082 @default.
- W4383262677 hasConcept C121332964 @default.
- W4383262677 hasConcept C124101348 @default.
- W4383262677 hasConcept C134306372 @default.
- W4383262677 hasConcept C154945302 @default.
- W4383262677 hasConcept C167966045 @default.
- W4383262677 hasConcept C167981619 @default.
- W4383262677 hasConcept C204321447 @default.
- W4383262677 hasConcept C31972630 @default.
- W4383262677 hasConcept C33923547 @default.
- W4383262677 hasConcept C36503486 @default.
- W4383262677 hasConcept C39890363 @default.
- W4383262677 hasConcept C41008148 @default.
- W4383262677 hasConcept C62520636 @default.
- W4383262677 hasConcept C66402592 @default.
- W4383262677 hasConcept C9679016 @default.
- W4383262677 hasConceptScore W4383262677C106131492 @default.
- W4383262677 hasConceptScore W4383262677C106301342 @default.
- W4383262677 hasConceptScore W4383262677C119857082 @default.
- W4383262677 hasConceptScore W4383262677C121332964 @default.
- W4383262677 hasConceptScore W4383262677C124101348 @default.
- W4383262677 hasConceptScore W4383262677C134306372 @default.
- W4383262677 hasConceptScore W4383262677C154945302 @default.
- W4383262677 hasConceptScore W4383262677C167966045 @default.
- W4383262677 hasConceptScore W4383262677C167981619 @default.
- W4383262677 hasConceptScore W4383262677C204321447 @default.
- W4383262677 hasConceptScore W4383262677C31972630 @default.
- W4383262677 hasConceptScore W4383262677C33923547 @default.
- W4383262677 hasConceptScore W4383262677C36503486 @default.
- W4383262677 hasConceptScore W4383262677C39890363 @default.
- W4383262677 hasConceptScore W4383262677C41008148 @default.
- W4383262677 hasConceptScore W4383262677C62520636 @default.
- W4383262677 hasConceptScore W4383262677C66402592 @default.
- W4383262677 hasConceptScore W4383262677C9679016 @default.
- W4383262677 hasIssue "13" @default.
- W4383262677 hasLocation W43832626771 @default.
- W4383262677 hasOpenAccess W4383262677 @default.
- W4383262677 hasPrimaryLocation W43832626771 @default.
- W4383262677 hasRelatedWork W2167764082 @default.
- W4383262677 hasRelatedWork W2884815824 @default.