Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383262690> ?p ?o ?g. }
- W4383262690 endingPage "7860" @default.
- W4383262690 startingPage "7860" @default.
- W4383262690 abstract "This paper proposes a lightweight detection model based on machine vision, YOLOv5-GC, to improve the efficiency and accuracy of detecting and classifying surface defects in preforming materials. During this process, clear images of the entire surface are difficult to obtain due to the stickiness, high reflectivity, and black resin of the thermosetting plain woven prepreg. To address this challenge, we built a machine vision platform equipped with a linescan camera and high-intensity linear light source that captures surface images of the material during the preforming process. To solve the problem of defect detection in the case of extremely small and imbalanced samples, we adopt a transfer learning approach based on the YOLOv5 neural network for defect recognition and introduce a coordinate attention and Ghost Bottleneck module to improve recognition accuracy and speed. Experimental results demonstrate that the proposed approach achieves rapid and high-precision identification of surface defects in preforming materials, outperforming other state-of-the-art methods. This work provides a promising solution for surface defect detection in preforming materials, contributing to the improvement of composite material quality." @default.
- W4383262690 created "2023-07-06" @default.
- W4383262690 creator A5001064887 @default.
- W4383262690 creator A5030148992 @default.
- W4383262690 creator A5061703418 @default.
- W4383262690 creator A5075133693 @default.
- W4383262690 creator A5087093728 @default.
- W4383262690 date "2023-07-04" @default.
- W4383262690 modified "2023-10-17" @default.
- W4383262690 title "Surface Defect Detection of Preform Based on Improved YOLOv5" @default.
- W4383262690 cites W2147800946 @default.
- W4383262690 cites W2589306531 @default.
- W4383262690 cites W2764052330 @default.
- W4383262690 cites W2768979414 @default.
- W4383262690 cites W2770141417 @default.
- W4383262690 cites W2770908349 @default.
- W4383262690 cites W2885496266 @default.
- W4383262690 cites W2900959210 @default.
- W4383262690 cites W2902787541 @default.
- W4383262690 cites W2902856291 @default.
- W4383262690 cites W2963037989 @default.
- W4383262690 cites W3034294619 @default.
- W4383262690 cites W3035053225 @default.
- W4383262690 cites W3035414587 @default.
- W4383262690 cites W3058107537 @default.
- W4383262690 cites W3104156061 @default.
- W4383262690 cites W3106250896 @default.
- W4383262690 cites W3120512958 @default.
- W4383262690 cites W3121084473 @default.
- W4383262690 cites W3177052299 @default.
- W4383262690 cites W3208486706 @default.
- W4383262690 cites W3209713683 @default.
- W4383262690 cites W3210432153 @default.
- W4383262690 cites W4200128174 @default.
- W4383262690 cites W4210342968 @default.
- W4383262690 cites W4220872312 @default.
- W4383262690 cites W4221101697 @default.
- W4383262690 cites W4225264809 @default.
- W4383262690 cites W4285107929 @default.
- W4383262690 cites W4291653445 @default.
- W4383262690 cites W4293106039 @default.
- W4383262690 cites W4297813689 @default.
- W4383262690 cites W4311774334 @default.
- W4383262690 cites W4312100091 @default.
- W4383262690 cites W4312494456 @default.
- W4383262690 cites W4318474024 @default.
- W4383262690 cites W4319985149 @default.
- W4383262690 cites W639708223 @default.
- W4383262690 doi "https://doi.org/10.3390/app13137860" @default.
- W4383262690 hasPublicationYear "2023" @default.
- W4383262690 type Work @default.
- W4383262690 citedByCount "1" @default.
- W4383262690 crossrefType "journal-article" @default.
- W4383262690 hasAuthorship W4383262690A5001064887 @default.
- W4383262690 hasAuthorship W4383262690A5030148992 @default.
- W4383262690 hasAuthorship W4383262690A5061703418 @default.
- W4383262690 hasAuthorship W4383262690A5075133693 @default.
- W4383262690 hasAuthorship W4383262690A5087093728 @default.
- W4383262690 hasBestOaLocation W43832626901 @default.
- W4383262690 hasConcept C111919701 @default.
- W4383262690 hasConcept C149635348 @default.
- W4383262690 hasConcept C154945302 @default.
- W4383262690 hasConcept C192562407 @default.
- W4383262690 hasConcept C2524010 @default.
- W4383262690 hasConcept C2776799497 @default.
- W4383262690 hasConcept C2780513914 @default.
- W4383262690 hasConcept C31972630 @default.
- W4383262690 hasConcept C33923547 @default.
- W4383262690 hasConcept C41008148 @default.
- W4383262690 hasConcept C50644808 @default.
- W4383262690 hasConcept C98045186 @default.
- W4383262690 hasConceptScore W4383262690C111919701 @default.
- W4383262690 hasConceptScore W4383262690C149635348 @default.
- W4383262690 hasConceptScore W4383262690C154945302 @default.
- W4383262690 hasConceptScore W4383262690C192562407 @default.
- W4383262690 hasConceptScore W4383262690C2524010 @default.
- W4383262690 hasConceptScore W4383262690C2776799497 @default.
- W4383262690 hasConceptScore W4383262690C2780513914 @default.
- W4383262690 hasConceptScore W4383262690C31972630 @default.
- W4383262690 hasConceptScore W4383262690C33923547 @default.
- W4383262690 hasConceptScore W4383262690C41008148 @default.
- W4383262690 hasConceptScore W4383262690C50644808 @default.
- W4383262690 hasConceptScore W4383262690C98045186 @default.
- W4383262690 hasFunder F4320321540 @default.
- W4383262690 hasIssue "13" @default.
- W4383262690 hasLocation W43832626901 @default.
- W4383262690 hasOpenAccess W4383262690 @default.
- W4383262690 hasPrimaryLocation W43832626901 @default.
- W4383262690 hasRelatedWork W1891287906 @default.
- W4383262690 hasRelatedWork W2087937280 @default.
- W4383262690 hasRelatedWork W2353647904 @default.
- W4383262690 hasRelatedWork W2354251581 @default.
- W4383262690 hasRelatedWork W2357461155 @default.
- W4383262690 hasRelatedWork W2384129116 @default.
- W4383262690 hasRelatedWork W2766721049 @default.
- W4383262690 hasRelatedWork W2899084033 @default.
- W4383262690 hasRelatedWork W3145924829 @default.
- W4383262690 hasRelatedWork W3152267458 @default.