Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383264908> ?p ?o ?g. }
- W4383264908 endingPage "296" @default.
- W4383264908 startingPage "282" @default.
- W4383264908 abstract "Detecting foreground objects in video is crucial in various machine vision applications and computerized video surveillance technologies. Object tracking and detection are essential in object identification, surveillance, and navigation approaches. Object detection is the technique of differentiating between background and foreground features in a photograph. Recent improvements in vision systems, including distributed smart cameras, have inspired researchers to develop enhanced machine vision applications for embedded systems. The efficiency of featured object detection algorithms declines as dynamic video data increases as contrasted to conventional object detection methods. Moving subjects that are blurred, fast-moving objects, backdrop occlusion, or dynamic background shifts within the foreground area of a video frame can all cause problems. These challenges result in insufficient prominence detection. This work develops a deep-learning model to overcome this issue. For object detection, a novel method utilizing YOLOv3 and MobileNet was built. First, rather than picking predefined feature maps in the conventional YOLOv3 architecture, the technique for determining feature maps in the MobileNet is optimized based on examining the receptive fields. This work focuses on three primary processes: object detection, recognition, and classification, to classify moving objects before shared features. Compared to existing algorithms, experimental findings on public datasets and our dataset reveal that the suggested approach achieves 99% correct classification accuracy for urban settings with moving objects. Experiments reveal that the suggested model beats existing cutting-edge models by speed and computation." @default.
- W4383264908 created "2023-07-06" @default.
- W4383264908 creator A5004834458 @default.
- W4383264908 creator A5090318664 @default.
- W4383264908 date "2023-07-05" @default.
- W4383264908 modified "2023-10-16" @default.
- W4383264908 title "Machine Learning Based Performance Analysis of Video Object Detection and Classification Using Modified Yolov3 and Mobilenet Algorithm" @default.
- W4383264908 cites W12041678 @default.
- W4383264908 cites W1976058189 @default.
- W4383264908 cites W2092183101 @default.
- W4383264908 cites W2346670124 @default.
- W4383264908 cites W2513853720 @default.
- W4383264908 cites W2787659442 @default.
- W4383264908 cites W2900846647 @default.
- W4383264908 cites W2901758161 @default.
- W4383264908 cites W2918365817 @default.
- W4383264908 cites W2942209004 @default.
- W4383264908 cites W2963122961 @default.
- W4383264908 cites W2972006294 @default.
- W4383264908 cites W2986387151 @default.
- W4383264908 cites W3007105597 @default.
- W4383264908 cites W3029515339 @default.
- W4383264908 cites W3038288066 @default.
- W4383264908 cites W3082843304 @default.
- W4383264908 cites W3116469262 @default.
- W4383264908 cites W3130752894 @default.
- W4383264908 cites W3155036638 @default.
- W4383264908 cites W3164364604 @default.
- W4383264908 cites W3193040822 @default.
- W4383264908 cites W4200629478 @default.
- W4383264908 cites W4205133380 @default.
- W4383264908 cites W4210266375 @default.
- W4383264908 cites W4210705247 @default.
- W4383264908 cites W4291825489 @default.
- W4383264908 cites W4294928818 @default.
- W4383264908 cites W4361007257 @default.
- W4383264908 cites W639708223 @default.
- W4383264908 doi "https://doi.org/10.53759/7669/jmc202303025" @default.
- W4383264908 hasPublicationYear "2023" @default.
- W4383264908 type Work @default.
- W4383264908 citedByCount "0" @default.
- W4383264908 crossrefType "journal-article" @default.
- W4383264908 hasAuthorship W4383264908A5004834458 @default.
- W4383264908 hasAuthorship W4383264908A5090318664 @default.
- W4383264908 hasBestOaLocation W43832649081 @default.
- W4383264908 hasConcept C11413529 @default.
- W4383264908 hasConcept C116834253 @default.
- W4383264908 hasConcept C126042441 @default.
- W4383264908 hasConcept C138885662 @default.
- W4383264908 hasConcept C153180895 @default.
- W4383264908 hasConcept C154945302 @default.
- W4383264908 hasConcept C202474056 @default.
- W4383264908 hasConcept C2776151529 @default.
- W4383264908 hasConcept C2776401178 @default.
- W4383264908 hasConcept C2779769447 @default.
- W4383264908 hasConcept C2781238097 @default.
- W4383264908 hasConcept C31510193 @default.
- W4383264908 hasConcept C31972630 @default.
- W4383264908 hasConcept C41008148 @default.
- W4383264908 hasConcept C41895202 @default.
- W4383264908 hasConcept C45374587 @default.
- W4383264908 hasConcept C4641261 @default.
- W4383264908 hasConcept C52622490 @default.
- W4383264908 hasConcept C5339829 @default.
- W4383264908 hasConcept C59822182 @default.
- W4383264908 hasConcept C64876066 @default.
- W4383264908 hasConcept C71681937 @default.
- W4383264908 hasConcept C76155785 @default.
- W4383264908 hasConcept C86803240 @default.
- W4383264908 hasConceptScore W4383264908C11413529 @default.
- W4383264908 hasConceptScore W4383264908C116834253 @default.
- W4383264908 hasConceptScore W4383264908C126042441 @default.
- W4383264908 hasConceptScore W4383264908C138885662 @default.
- W4383264908 hasConceptScore W4383264908C153180895 @default.
- W4383264908 hasConceptScore W4383264908C154945302 @default.
- W4383264908 hasConceptScore W4383264908C202474056 @default.
- W4383264908 hasConceptScore W4383264908C2776151529 @default.
- W4383264908 hasConceptScore W4383264908C2776401178 @default.
- W4383264908 hasConceptScore W4383264908C2779769447 @default.
- W4383264908 hasConceptScore W4383264908C2781238097 @default.
- W4383264908 hasConceptScore W4383264908C31510193 @default.
- W4383264908 hasConceptScore W4383264908C31972630 @default.
- W4383264908 hasConceptScore W4383264908C41008148 @default.
- W4383264908 hasConceptScore W4383264908C41895202 @default.
- W4383264908 hasConceptScore W4383264908C45374587 @default.
- W4383264908 hasConceptScore W4383264908C4641261 @default.
- W4383264908 hasConceptScore W4383264908C52622490 @default.
- W4383264908 hasConceptScore W4383264908C5339829 @default.
- W4383264908 hasConceptScore W4383264908C59822182 @default.
- W4383264908 hasConceptScore W4383264908C64876066 @default.
- W4383264908 hasConceptScore W4383264908C71681937 @default.
- W4383264908 hasConceptScore W4383264908C76155785 @default.
- W4383264908 hasConceptScore W4383264908C86803240 @default.
- W4383264908 hasLocation W43832649081 @default.
- W4383264908 hasOpenAccess W4383264908 @default.
- W4383264908 hasPrimaryLocation W43832649081 @default.
- W4383264908 hasRelatedWork W1971759388 @default.
- W4383264908 hasRelatedWork W2309573947 @default.