Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383264953> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4383264953 endingPage "235" @default.
- W4383264953 startingPage "222" @default.
- W4383264953 abstract "Wireless sensor networks (WSNs) are widely utilized in various fields, including environmental monitoring, healthcare, and industrial automation. Optimizing energy consumption is one of the most challenging aspects of WSNs due to the limited capacity of the batteries that power the sensors. This chapter explores using Python libraries to optimize the energy consumption of WSNs. In WSNs, various nodes, including sensor, relay, and sink nodes, are introduced. How Python libraries such as NumPy, Pandas, Scikit-Learn, and Matplotlib can be used to optimize energy consumption is discussed. Techniques for optimizing energy consumption, such as data aggregation, duty cycling, and power management, are also presented. By employing these techniques and Python libraries, the energy consumption of WSNs can be drastically decreased, thereby extending battery life and boosting performance." @default.
- W4383264953 created "2023-07-06" @default.
- W4383264953 creator A5044771843 @default.
- W4383264953 creator A5058497743 @default.
- W4383264953 date "2023-06-30" @default.
- W4383264953 modified "2023-10-16" @default.
- W4383264953 title "Optimizing Energy Consumption in Wireless Sensor Networks Using Python Libraries" @default.
- W4383264953 cites W2903732110 @default.
- W4383264953 cites W2954168748 @default.
- W4383264953 cites W2966328930 @default.
- W4383264953 cites W2979428852 @default.
- W4383264953 cites W3005859857 @default.
- W4383264953 cites W3039254405 @default.
- W4383264953 cites W3081064304 @default.
- W4383264953 cites W3082642222 @default.
- W4383264953 cites W3119709224 @default.
- W4383264953 cites W3119997413 @default.
- W4383264953 cites W3183403078 @default.
- W4383264953 cites W3203098540 @default.
- W4383264953 cites W4245940988 @default.
- W4383264953 cites W4311857643 @default.
- W4383264953 cites W4312729928 @default.
- W4383264953 cites W4353096509 @default.
- W4383264953 cites W4365137662 @default.
- W4383264953 doi "https://doi.org/10.4018/978-1-6684-7100-5.ch011" @default.
- W4383264953 hasPublicationYear "2023" @default.
- W4383264953 type Work @default.
- W4383264953 citedByCount "0" @default.
- W4383264953 crossrefType "book-chapter" @default.
- W4383264953 hasAuthorship W4383264953A5044771843 @default.
- W4383264953 hasAuthorship W4383264953A5058497743 @default.
- W4383264953 hasConcept C111919701 @default.
- W4383264953 hasConcept C119599485 @default.
- W4383264953 hasConcept C121332964 @default.
- W4383264953 hasConcept C127413603 @default.
- W4383264953 hasConcept C149635348 @default.
- W4383264953 hasConcept C163258240 @default.
- W4383264953 hasConcept C24590314 @default.
- W4383264953 hasConcept C2780165032 @default.
- W4383264953 hasConcept C2984118289 @default.
- W4383264953 hasConcept C31258907 @default.
- W4383264953 hasConcept C41008148 @default.
- W4383264953 hasConcept C519991488 @default.
- W4383264953 hasConcept C62520636 @default.
- W4383264953 hasConceptScore W4383264953C111919701 @default.
- W4383264953 hasConceptScore W4383264953C119599485 @default.
- W4383264953 hasConceptScore W4383264953C121332964 @default.
- W4383264953 hasConceptScore W4383264953C127413603 @default.
- W4383264953 hasConceptScore W4383264953C149635348 @default.
- W4383264953 hasConceptScore W4383264953C163258240 @default.
- W4383264953 hasConceptScore W4383264953C24590314 @default.
- W4383264953 hasConceptScore W4383264953C2780165032 @default.
- W4383264953 hasConceptScore W4383264953C2984118289 @default.
- W4383264953 hasConceptScore W4383264953C31258907 @default.
- W4383264953 hasConceptScore W4383264953C41008148 @default.
- W4383264953 hasConceptScore W4383264953C519991488 @default.
- W4383264953 hasConceptScore W4383264953C62520636 @default.
- W4383264953 hasLocation W43832649531 @default.
- W4383264953 hasOpenAccess W4383264953 @default.
- W4383264953 hasPrimaryLocation W43832649531 @default.
- W4383264953 hasRelatedWork W1977006782 @default.
- W4383264953 hasRelatedWork W2028498446 @default.
- W4383264953 hasRelatedWork W2031485947 @default.
- W4383264953 hasRelatedWork W2076875635 @default.
- W4383264953 hasRelatedWork W2096985696 @default.
- W4383264953 hasRelatedWork W2124197530 @default.
- W4383264953 hasRelatedWork W2171343370 @default.
- W4383264953 hasRelatedWork W2534607157 @default.
- W4383264953 hasRelatedWork W3004793311 @default.
- W4383264953 hasRelatedWork W4231447041 @default.
- W4383264953 isParatext "false" @default.
- W4383264953 isRetracted "false" @default.
- W4383264953 workType "book-chapter" @default.