Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383265329> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4383265329 endingPage "265" @default.
- W4383265329 startingPage "253" @default.
- W4383265329 abstract "This chapter investigates Python's involvement in self-supervised contrastive learning (SSCL) for medical imagery with report generation. The research highlights the relevance of SSCL as a method for creating medical imaging reports and the benefits of implementing it using Python. The literature review gives a complete overview of SSCL approaches in medical imaging and shows the advantages of SSCL implementation using Python libraries such as PyTorch, TensorFlow, and Keras. The study's methodology describes the research topics, survey design, methods of data gathering, and analytic procedures. The study named SSCL-GMIR findings indicate that several practitioners utilize SSCL in medical imaging using Python modules. This study highlights Python's significance in implementing SSCL for creating medical imaging report documents, offering researchers and practitioners a more efficient and effective method for producing accurate and informative reports and diagnoses." @default.
- W4383265329 created "2023-07-06" @default.
- W4383265329 creator A5018167947 @default.
- W4383265329 creator A5044771843 @default.
- W4383265329 date "2023-06-30" @default.
- W4383265329 modified "2023-10-16" @default.
- W4383265329 title "Exploring the Role of Python in Self-Supervised Contrastive Learning for Generating Medical Imaging Reports" @default.
- W4383265329 cites W2964744899 @default.
- W4383265329 cites W4200008986 @default.
- W4383265329 cites W4206961924 @default.
- W4383265329 cites W4299883383 @default.
- W4383265329 cites W4309549941 @default.
- W4383265329 cites W4313591097 @default.
- W4383265329 cites W4318156757 @default.
- W4383265329 cites W4318570691 @default.
- W4383265329 cites W4321505562 @default.
- W4383265329 cites W4321786520 @default.
- W4383265329 cites W4323538239 @default.
- W4383265329 cites W4323782344 @default.
- W4383265329 cites W4323838696 @default.
- W4383265329 cites W4380854412 @default.
- W4383265329 doi "https://doi.org/10.4018/978-1-6684-7100-5.ch013" @default.
- W4383265329 hasPublicationYear "2023" @default.
- W4383265329 type Work @default.
- W4383265329 citedByCount "0" @default.
- W4383265329 crossrefType "book-chapter" @default.
- W4383265329 hasAuthorship W4383265329A5018167947 @default.
- W4383265329 hasAuthorship W4383265329A5044771843 @default.
- W4383265329 hasConcept C126838900 @default.
- W4383265329 hasConcept C154945302 @default.
- W4383265329 hasConcept C199360897 @default.
- W4383265329 hasConcept C2522767166 @default.
- W4383265329 hasConcept C31601959 @default.
- W4383265329 hasConcept C41008148 @default.
- W4383265329 hasConcept C519991488 @default.
- W4383265329 hasConcept C534262118 @default.
- W4383265329 hasConcept C71924100 @default.
- W4383265329 hasConceptScore W4383265329C126838900 @default.
- W4383265329 hasConceptScore W4383265329C154945302 @default.
- W4383265329 hasConceptScore W4383265329C199360897 @default.
- W4383265329 hasConceptScore W4383265329C2522767166 @default.
- W4383265329 hasConceptScore W4383265329C31601959 @default.
- W4383265329 hasConceptScore W4383265329C41008148 @default.
- W4383265329 hasConceptScore W4383265329C519991488 @default.
- W4383265329 hasConceptScore W4383265329C534262118 @default.
- W4383265329 hasConceptScore W4383265329C71924100 @default.
- W4383265329 hasLocation W43832653291 @default.
- W4383265329 hasOpenAccess W4383265329 @default.
- W4383265329 hasPrimaryLocation W43832653291 @default.
- W4383265329 hasRelatedWork W1974832135 @default.
- W4383265329 hasRelatedWork W2090215046 @default.
- W4383265329 hasRelatedWork W2109332972 @default.
- W4383265329 hasRelatedWork W2327204559 @default.
- W4383265329 hasRelatedWork W2529681551 @default.
- W4383265329 hasRelatedWork W2547057562 @default.
- W4383265329 hasRelatedWork W2587671147 @default.
- W4383265329 hasRelatedWork W3129254793 @default.
- W4383265329 hasRelatedWork W77035938 @default.
- W4383265329 hasRelatedWork W2525727584 @default.
- W4383265329 isParatext "false" @default.
- W4383265329 isRetracted "false" @default.
- W4383265329 workType "book-chapter" @default.