Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383294922> ?p ?o ?g. }
- W4383294922 abstract "Abstract Lung cancer screening using computed tomography (CT) has increased the detection rate of small pulmonary nodules and early-stage lung adenocarcinoma. It would be clinically meaningful to accurate assessment of the nodule histology by CT scans with advanced deep learning algorithms. However, recent studies mainly focus on predicting benign and malignant nodules, lacking of model for the risk stratification of invasive adenocarcinoma. We propose an ensemble multi-view 3D convolutional neural network (EMV-3D-CNN) model to study the risk stratification of lung adenocarcinoma. We include 1075 lung nodules (≤30 mm and ≥4 mm) with preoperative thin-section CT scans and definite pathology confirmed by surgery. Our model achieves a state-of-art performance of 91.3% and 92.9% AUC for diagnosis of benign/malignant and pre-invasive/invasive nodules, respectively. Importantly, our model outperforms senior doctors in risk stratification of invasive adenocarcinoma with 77.6% accuracy [i.e., Grades 1, 2, 3]). It provides detailed predictive histological information for the surgical management of pulmonary nodules. Finally, for user-friendly access, the proposed model is implemented as a web-based system ( https://seeyourlung.com.cn )." @default.
- W4383294922 created "2023-07-06" @default.
- W4383294922 creator A5000051451 @default.
- W4383294922 creator A5000077691 @default.
- W4383294922 creator A5005199865 @default.
- W4383294922 creator A5022644442 @default.
- W4383294922 creator A5026804722 @default.
- W4383294922 creator A5047661456 @default.
- W4383294922 creator A5048394694 @default.
- W4383294922 creator A5062029331 @default.
- W4383294922 creator A5067093084 @default.
- W4383294922 creator A5090167428 @default.
- W4383294922 date "2023-07-05" @default.
- W4383294922 modified "2023-10-16" @default.
- W4383294922 title "An ensemble deep learning model for risk stratification of invasive lung adenocarcinoma using thin-slice CT" @default.
- W4383294922 cites W130099911 @default.
- W4383294922 cites W1901129140 @default.
- W4383294922 cites W2003048812 @default.
- W4383294922 cites W2097117768 @default.
- W4383294922 cites W2098105438 @default.
- W4383294922 cites W2103348420 @default.
- W4383294922 cites W2120903075 @default.
- W4383294922 cites W2136844032 @default.
- W4383294922 cites W2176955114 @default.
- W4383294922 cites W2194775991 @default.
- W4383294922 cites W2316328037 @default.
- W4383294922 cites W2336837860 @default.
- W4383294922 cites W2337016604 @default.
- W4383294922 cites W2394599079 @default.
- W4383294922 cites W2598574140 @default.
- W4383294922 cites W2622078337 @default.
- W4383294922 cites W2760946358 @default.
- W4383294922 cites W2767128594 @default.
- W4383294922 cites W2795860190 @default.
- W4383294922 cites W2807850749 @default.
- W4383294922 cites W2810524012 @default.
- W4383294922 cites W2894585861 @default.
- W4383294922 cites W2946185430 @default.
- W4383294922 cites W2955345307 @default.
- W4383294922 cites W2974460860 @default.
- W4383294922 cites W2987546910 @default.
- W4383294922 cites W2992717377 @default.
- W4383294922 cites W2996290406 @default.
- W4383294922 cites W3004966381 @default.
- W4383294922 cites W3005876735 @default.
- W4383294922 cites W3010442991 @default.
- W4383294922 cites W3013036428 @default.
- W4383294922 cites W3017170546 @default.
- W4383294922 cites W3020045953 @default.
- W4383294922 cites W3021217653 @default.
- W4383294922 cites W3031635948 @default.
- W4383294922 cites W3032755490 @default.
- W4383294922 cites W3035834839 @default.
- W4383294922 cites W3039746368 @default.
- W4383294922 cites W3040240789 @default.
- W4383294922 cites W3043631199 @default.
- W4383294922 cites W3045156337 @default.
- W4383294922 cites W3048160945 @default.
- W4383294922 cites W3080199224 @default.
- W4383294922 cites W3092338402 @default.
- W4383294922 cites W3126588155 @default.
- W4383294922 cites W3128370085 @default.
- W4383294922 cites W3128646645 @default.
- W4383294922 cites W3129886765 @default.
- W4383294922 cites W3132591370 @default.
- W4383294922 cites W3134553072 @default.
- W4383294922 cites W3135287842 @default.
- W4383294922 cites W3149839747 @default.
- W4383294922 cites W3159044030 @default.
- W4383294922 cites W3161948739 @default.
- W4383294922 cites W3176087273 @default.
- W4383294922 cites W3184614870 @default.
- W4383294922 cites W3205383291 @default.
- W4383294922 cites W3206889137 @default.
- W4383294922 cites W3213316637 @default.
- W4383294922 cites W3213687503 @default.
- W4383294922 cites W4206257560 @default.
- W4383294922 cites W4224235086 @default.
- W4383294922 cites W4293254812 @default.
- W4383294922 cites W4296502004 @default.
- W4383294922 cites W4323569696 @default.
- W4383294922 doi "https://doi.org/10.1038/s41746-023-00866-z" @default.
- W4383294922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37407729" @default.
- W4383294922 hasPublicationYear "2023" @default.
- W4383294922 type Work @default.
- W4383294922 citedByCount "0" @default.
- W4383294922 crossrefType "journal-article" @default.
- W4383294922 hasAuthorship W4383294922A5000051451 @default.
- W4383294922 hasAuthorship W4383294922A5000077691 @default.
- W4383294922 hasAuthorship W4383294922A5005199865 @default.
- W4383294922 hasAuthorship W4383294922A5022644442 @default.
- W4383294922 hasAuthorship W4383294922A5026804722 @default.
- W4383294922 hasAuthorship W4383294922A5047661456 @default.
- W4383294922 hasAuthorship W4383294922A5048394694 @default.
- W4383294922 hasAuthorship W4383294922A5062029331 @default.
- W4383294922 hasAuthorship W4383294922A5067093084 @default.
- W4383294922 hasAuthorship W4383294922A5090167428 @default.
- W4383294922 hasBestOaLocation W43832949221 @default.
- W4383294922 hasConcept C121608353 @default.
- W4383294922 hasConcept C126322002 @default.