Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383301751> ?p ?o ?g. }
- W4383301751 abstract "Shape measurements are crucial for evolutionary and developmental biology; however, they present difficulties in the objective and automatic quantification of arbitrary shapes. Conventional approaches are based on anatomically prominent landmarks, which require manual annotations by experts. Here, we develop a machine-learning approach by presenting morphological regulated variational AutoEncoder (Morpho-VAE), an image-based deep learning framework, to conduct landmark-free shape analysis. The proposed architecture combines the unsupervised and supervised learning models to reduce dimensionality by focusing on morphological features that distinguish data with different labels. We applied the method to primate mandible image data. The extracted morphological features reflected the characteristics of the families to which the organisms belonged, despite the absence of correlation between the extracted morphological features and phylogenetic distance. Furthermore, we demonstrated the reconstruction of missing segments from incomplete images. The proposed method provides a flexible and promising tool for analyzing a wide variety of image data of biological shapes even those with missing segments." @default.
- W4383301751 created "2023-07-07" @default.
- W4383301751 creator A5031861661 @default.
- W4383301751 creator A5040545154 @default.
- W4383301751 creator A5070683144 @default.
- W4383301751 creator A5084886439 @default.
- W4383301751 date "2023-07-06" @default.
- W4383301751 modified "2023-09-30" @default.
- W4383301751 title "A deep learning approach for morphological feature extraction based on variational auto-encoder: an application to mandible shape" @default.
- W4383301751 cites W1550758238 @default.
- W4383301751 cites W1571578421 @default.
- W4383301751 cites W1608165171 @default.
- W4383301751 cites W1978377738 @default.
- W4383301751 cites W1983726113 @default.
- W4383301751 cites W1993680142 @default.
- W4383301751 cites W1995980194 @default.
- W4383301751 cites W2003876859 @default.
- W4383301751 cites W2006126312 @default.
- W4383301751 cites W2006545248 @default.
- W4383301751 cites W2007199000 @default.
- W4383301751 cites W2007422949 @default.
- W4383301751 cites W2009099094 @default.
- W4383301751 cites W2010374550 @default.
- W4383301751 cites W2012177884 @default.
- W4383301751 cites W2026043786 @default.
- W4383301751 cites W2026686846 @default.
- W4383301751 cites W2027419284 @default.
- W4383301751 cites W2033791671 @default.
- W4383301751 cites W2036067717 @default.
- W4383301751 cites W2049767682 @default.
- W4383301751 cites W2051224630 @default.
- W4383301751 cites W2051688318 @default.
- W4383301751 cites W2052336637 @default.
- W4383301751 cites W2060543757 @default.
- W4383301751 cites W2060918284 @default.
- W4383301751 cites W2069816479 @default.
- W4383301751 cites W2074185662 @default.
- W4383301751 cites W2080786178 @default.
- W4383301751 cites W2080838408 @default.
- W4383301751 cites W2081882777 @default.
- W4383301751 cites W2090753423 @default.
- W4383301751 cites W2098253011 @default.
- W4383301751 cites W2110224102 @default.
- W4383301751 cites W2117580587 @default.
- W4383301751 cites W2118403020 @default.
- W4383301751 cites W2118651555 @default.
- W4383301751 cites W2123426336 @default.
- W4383301751 cites W2124024366 @default.
- W4383301751 cites W2127998734 @default.
- W4383301751 cites W2132661331 @default.
- W4383301751 cites W2141125852 @default.
- W4383301751 cites W2148028873 @default.
- W4383301751 cites W2152912302 @default.
- W4383301751 cites W2160597044 @default.
- W4383301751 cites W2168888069 @default.
- W4383301751 cites W2280099985 @default.
- W4383301751 cites W2620620902 @default.
- W4383301751 cites W2736590844 @default.
- W4383301751 cites W2739362466 @default.
- W4383301751 cites W2740754384 @default.
- W4383301751 cites W2755002522 @default.
- W4383301751 cites W2765793020 @default.
- W4383301751 cites W2767195746 @default.
- W4383301751 cites W2801923600 @default.
- W4383301751 cites W2805964580 @default.
- W4383301751 cites W2911625359 @default.
- W4383301751 cites W2922841016 @default.
- W4383301751 cites W2949676527 @default.
- W4383301751 cites W2952326398 @default.
- W4383301751 cites W2967844557 @default.
- W4383301751 cites W2979905951 @default.
- W4383301751 cites W2980199780 @default.
- W4383301751 cites W2980565598 @default.
- W4383301751 cites W2984353870 @default.
- W4383301751 cites W2991998196 @default.
- W4383301751 cites W3004608648 @default.
- W4383301751 cites W3005210554 @default.
- W4383301751 cites W3029126545 @default.
- W4383301751 cites W3035253074 @default.
- W4383301751 cites W3039448353 @default.
- W4383301751 cites W3082468182 @default.
- W4383301751 cites W3099369386 @default.
- W4383301751 cites W3102564565 @default.
- W4383301751 cites W3105282616 @default.
- W4383301751 cites W3191820442 @default.
- W4383301751 cites W3195154135 @default.
- W4383301751 cites W4238981581 @default.
- W4383301751 cites W4251173149 @default.
- W4383301751 cites W4253904724 @default.
- W4383301751 cites W4280551114 @default.
- W4383301751 cites W4323567395 @default.
- W4383301751 cites W4323647742 @default.
- W4383301751 doi "https://doi.org/10.1038/s41540-023-00293-6" @default.
- W4383301751 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37407628" @default.
- W4383301751 hasPublicationYear "2023" @default.
- W4383301751 type Work @default.
- W4383301751 citedByCount "0" @default.
- W4383301751 crossrefType "journal-article" @default.
- W4383301751 hasAuthorship W4383301751A5031861661 @default.
- W4383301751 hasAuthorship W4383301751A5040545154 @default.