Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383302014> ?p ?o ?g. }
- W4383302014 abstract "We propose a new approach to dynamical system forecasting called data-informed-reservoir computing (DI-RC) that, while solely being based on data, yields increased accuracy, reduced computational cost, and mitigates tedious hyper-parameter optimization of the reservoir computer (RC). Our DI-RC approach is based on the recently proposed hybrid setup where a knowledge-based model is combined with a machine learning prediction system, but it replaces the knowledge-based component by a data-driven model discovery technique. As a result, our approach can be chosen when a suitable knowledge-based model is not available. We demonstrate our approach using a delay-based RC as the machine learning component in conjunction with sparse identification of nonlinear dynamical systems for the data-driven model component. We test the performance on two example systems: the Lorenz system and the Kuramoto-Sivashinsky system. Our results indicate that our proposed technique can yield an improvement in the time-series forecasting capabilities compared with both approaches applied individually, while remaining computationally cheap. The benefit of our proposed approach, compared with pure RC, is most pronounced when the reservoir parameters are not optimized, thereby reducing the need for hyperparameter optimization." @default.
- W4383302014 created "2023-07-07" @default.
- W4383302014 creator A5003098403 @default.
- W4383302014 creator A5040584388 @default.
- W4383302014 creator A5046675797 @default.
- W4383302014 creator A5058057219 @default.
- W4383302014 creator A5068556549 @default.
- W4383302014 date "2023-07-01" @default.
- W4383302014 modified "2023-10-14" @default.
- W4383302014 title "Data-informed reservoir computing for efficient time-series prediction" @default.
- W4383302014 cites W1965702053 @default.
- W4383302014 cites W1977664984 @default.
- W4383302014 cites W1982999858 @default.
- W4383302014 cites W2022248835 @default.
- W4383302014 cites W2027319740 @default.
- W4383302014 cites W2038869333 @default.
- W4383302014 cites W2079329690 @default.
- W4383302014 cites W2103179919 @default.
- W4383302014 cites W2139886236 @default.
- W4383302014 cites W2163062501 @default.
- W4383302014 cites W2239232218 @default.
- W4383302014 cites W2337087938 @default.
- W4383302014 cites W2580792538 @default.
- W4383302014 cites W2587524409 @default.
- W4383302014 cites W2593973628 @default.
- W4383302014 cites W2605147097 @default.
- W4383302014 cites W2765128778 @default.
- W4383302014 cites W2782714865 @default.
- W4383302014 cites W2785760623 @default.
- W4383302014 cites W2789580836 @default.
- W4383302014 cites W2898551707 @default.
- W4383302014 cites W2912111787 @default.
- W4383302014 cites W2960400646 @default.
- W4383302014 cites W2962632550 @default.
- W4383302014 cites W2998821156 @default.
- W4383302014 cites W3024515584 @default.
- W4383302014 cites W3028073062 @default.
- W4383302014 cites W3098922556 @default.
- W4383302014 cites W3101465594 @default.
- W4383302014 cites W3101544609 @default.
- W4383302014 cites W3105919389 @default.
- W4383302014 cites W3129474221 @default.
- W4383302014 cites W3137475628 @default.
- W4383302014 cites W3152599691 @default.
- W4383302014 cites W3159646847 @default.
- W4383302014 cites W3161808614 @default.
- W4383302014 cites W3182899221 @default.
- W4383302014 cites W3201489801 @default.
- W4383302014 cites W3208812860 @default.
- W4383302014 cites W4210524437 @default.
- W4383302014 cites W4212848591 @default.
- W4383302014 cites W4213268609 @default.
- W4383302014 cites W4224071957 @default.
- W4383302014 cites W4225413933 @default.
- W4383302014 cites W4281612099 @default.
- W4383302014 cites W4284898586 @default.
- W4383302014 cites W4292181403 @default.
- W4383302014 cites W4292764387 @default.
- W4383302014 cites W4297215632 @default.
- W4383302014 cites W4300089661 @default.
- W4383302014 cites W4300816914 @default.
- W4383302014 cites W4306956425 @default.
- W4383302014 cites W4308145831 @default.
- W4383302014 cites W4309026856 @default.
- W4383302014 cites W4309664598 @default.
- W4383302014 cites W4320351389 @default.
- W4383302014 cites W4381620695 @default.
- W4383302014 doi "https://doi.org/10.1063/5.0152311" @default.
- W4383302014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37408150" @default.
- W4383302014 hasPublicationYear "2023" @default.
- W4383302014 type Work @default.
- W4383302014 citedByCount "1" @default.
- W4383302014 crossrefType "journal-article" @default.
- W4383302014 hasAuthorship W4383302014A5003098403 @default.
- W4383302014 hasAuthorship W4383302014A5040584388 @default.
- W4383302014 hasAuthorship W4383302014A5046675797 @default.
- W4383302014 hasAuthorship W4383302014A5058057219 @default.
- W4383302014 hasAuthorship W4383302014A5068556549 @default.
- W4383302014 hasBestOaLocation W43833020141 @default.
- W4383302014 hasConcept C11413529 @default.
- W4383302014 hasConcept C119857082 @default.
- W4383302014 hasConcept C121332964 @default.
- W4383302014 hasConcept C124101348 @default.
- W4383302014 hasConcept C135796866 @default.
- W4383302014 hasConcept C143724316 @default.
- W4383302014 hasConcept C147168706 @default.
- W4383302014 hasConcept C151406439 @default.
- W4383302014 hasConcept C151730666 @default.
- W4383302014 hasConcept C154945302 @default.
- W4383302014 hasConcept C158622935 @default.
- W4383302014 hasConcept C168167062 @default.
- W4383302014 hasConcept C41008148 @default.
- W4383302014 hasConcept C50644808 @default.
- W4383302014 hasConcept C62520636 @default.
- W4383302014 hasConcept C79379906 @default.
- W4383302014 hasConcept C8642999 @default.
- W4383302014 hasConcept C86803240 @default.
- W4383302014 hasConcept C97355855 @default.
- W4383302014 hasConceptScore W4383302014C11413529 @default.
- W4383302014 hasConceptScore W4383302014C119857082 @default.