Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383313218> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4383313218 abstract "Abstract Recent advances in Large Language Models (LLMs) have shown great potential in various domains, particularly in processing text-based data. However, their applicability to biomedical time-series signals (e.g. electrograms) remains largely unexplored due to the lack of a signal-to-text (sequence) engine to harness the power of LLMs. The application of biosignals has been growing due to the improvements in the reliability, noise and performance of front-end sensing, and back-end signal processing, despite lowering the number of sensing components (e.g. electrodes) needed for effective and long-term use (e.g. in wearable or implantable devices). One of the most reliable techniques used in clinical settings is producing a technical/clinical report on the quality and features of collected data and using that alongside a set of auxiliary or complementary data (e.g. imaging, blood tests, medical records). This work addresses the missing puzzle in implementing conversational artificial intelligence (AI), a reliable, technical and clinically relevant signal-to-text (Sig2Txt) engine. While medical foundation models can be expected, reports of Sig2Txt engine in large scale can be utilised in years to come to develop foundational models for a unified purpose. In this work, we propose a system (SignalGPT or BioSignal Copilot) that reduces medical signals to a freestyle or formatted clinical, technical report close to a brief clinical report capturing key features and characterisation of input signal. In its ideal form, this system provides the tool necessary to produce the technical input sequence necessary for LLMs as a step toward using AI in the medical and clinical domains as an assistant to clinicians and patients. To the best of our knowledge, this is the first system for bioSig2Txt generation, and the idea can be used in other domains as well to produce technical reports to harness the power of LLMs. This method also improves the interpretability and tracking (history) of information into and out of the AI models. We did implement this aspect through a buffer in our system. As a preliminary step, we verify the feasibility of the BioSignal Copilot (SignalGPT) using a clinical ECG dataset to demonstrate the advantages of the proposed system. In this feasibility study, we used prompts and fine-tuning to prevent fluctuations in response. The combination of biosignal processing and natural language processing offers a promising solution that improves the interpretability of the results obtained from AI, which also leverages the rapid growth of LLMs." @default.
- W4383313218 created "2023-07-07" @default.
- W4383313218 creator A5002335888 @default.
- W4383313218 creator A5016888840 @default.
- W4383313218 creator A5055081506 @default.
- W4383313218 creator A5065017416 @default.
- W4383313218 creator A5089872688 @default.
- W4383313218 date "2023-07-06" @default.
- W4383313218 modified "2023-09-24" @default.
- W4383313218 title "BioSignal Copilot: Leveraging the power of LLMs in drafting reports for biomedical signals" @default.
- W4383313218 cites W2029938629 @default.
- W4383313218 cites W2122708981 @default.
- W4383313218 cites W2164882523 @default.
- W4383313218 cites W2332983105 @default.
- W4383313218 cites W2412620442 @default.
- W4383313218 cites W2592841437 @default.
- W4383313218 cites W2791363002 @default.
- W4383313218 cites W2945627929 @default.
- W4383313218 cites W3099085560 @default.
- W4383313218 cites W3127637041 @default.
- W4383313218 cites W4317910576 @default.
- W4383313218 cites W4319777976 @default.
- W4383313218 cites W4319964787 @default.
- W4383313218 cites W4321018146 @default.
- W4383313218 cites W4360976361 @default.
- W4383313218 cites W4361289889 @default.
- W4383313218 cites W4365143687 @default.
- W4383313218 cites W4366823741 @default.
- W4383313218 cites W4367310920 @default.
- W4383313218 cites W4376122030 @default.
- W4383313218 cites W4377966413 @default.
- W4383313218 cites W4378472035 @default.
- W4383313218 doi "https://doi.org/10.1101/2023.06.28.23291916" @default.
- W4383313218 hasPublicationYear "2023" @default.
- W4383313218 type Work @default.
- W4383313218 citedByCount "0" @default.
- W4383313218 crossrefType "posted-content" @default.
- W4383313218 hasAuthorship W4383313218A5002335888 @default.
- W4383313218 hasAuthorship W4383313218A5016888840 @default.
- W4383313218 hasAuthorship W4383313218A5055081506 @default.
- W4383313218 hasAuthorship W4383313218A5065017416 @default.
- W4383313218 hasAuthorship W4383313218A5089872688 @default.
- W4383313218 hasBestOaLocation W43833132181 @default.
- W4383313218 hasConcept C115961682 @default.
- W4383313218 hasConcept C121332964 @default.
- W4383313218 hasConcept C124101348 @default.
- W4383313218 hasConcept C149635348 @default.
- W4383313218 hasConcept C150594956 @default.
- W4383313218 hasConcept C154945302 @default.
- W4383313218 hasConcept C163258240 @default.
- W4383313218 hasConcept C199360897 @default.
- W4383313218 hasConcept C2522767166 @default.
- W4383313218 hasConcept C26517878 @default.
- W4383313218 hasConcept C2779055241 @default.
- W4383313218 hasConcept C2779843651 @default.
- W4383313218 hasConcept C38652104 @default.
- W4383313218 hasConcept C41008148 @default.
- W4383313218 hasConcept C43214815 @default.
- W4383313218 hasConcept C555944384 @default.
- W4383313218 hasConcept C62520636 @default.
- W4383313218 hasConcept C76155785 @default.
- W4383313218 hasConcept C99498987 @default.
- W4383313218 hasConceptScore W4383313218C115961682 @default.
- W4383313218 hasConceptScore W4383313218C121332964 @default.
- W4383313218 hasConceptScore W4383313218C124101348 @default.
- W4383313218 hasConceptScore W4383313218C149635348 @default.
- W4383313218 hasConceptScore W4383313218C150594956 @default.
- W4383313218 hasConceptScore W4383313218C154945302 @default.
- W4383313218 hasConceptScore W4383313218C163258240 @default.
- W4383313218 hasConceptScore W4383313218C199360897 @default.
- W4383313218 hasConceptScore W4383313218C2522767166 @default.
- W4383313218 hasConceptScore W4383313218C26517878 @default.
- W4383313218 hasConceptScore W4383313218C2779055241 @default.
- W4383313218 hasConceptScore W4383313218C2779843651 @default.
- W4383313218 hasConceptScore W4383313218C38652104 @default.
- W4383313218 hasConceptScore W4383313218C41008148 @default.
- W4383313218 hasConceptScore W4383313218C43214815 @default.
- W4383313218 hasConceptScore W4383313218C555944384 @default.
- W4383313218 hasConceptScore W4383313218C62520636 @default.
- W4383313218 hasConceptScore W4383313218C76155785 @default.
- W4383313218 hasConceptScore W4383313218C99498987 @default.
- W4383313218 hasLocation W43833132181 @default.
- W4383313218 hasOpenAccess W4383313218 @default.
- W4383313218 hasPrimaryLocation W43833132181 @default.
- W4383313218 hasRelatedWork W2329452785 @default.
- W4383313218 hasRelatedWork W2333243195 @default.
- W4383313218 hasRelatedWork W2615077619 @default.
- W4383313218 hasRelatedWork W2952078592 @default.
- W4383313218 hasRelatedWork W3035790201 @default.
- W4383313218 hasRelatedWork W3082636388 @default.
- W4383313218 hasRelatedWork W3135375550 @default.
- W4383313218 hasRelatedWork W4281641048 @default.
- W4383313218 hasRelatedWork W4289599211 @default.
- W4383313218 hasRelatedWork W83544588 @default.
- W4383313218 isParatext "false" @default.
- W4383313218 isRetracted "false" @default.
- W4383313218 workType "article" @default.