Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383314747> ?p ?o ?g. }
- W4383314747 endingPage "115121" @default.
- W4383314747 startingPage "115121" @default.
- W4383314747 abstract "Abstract Calcium, potassium, nitrogen, magnesium, and phosphorus, the main elements of the nutrient solution, are absorbed by plants and play an important role in plants. By measuring Ca 2+ , K + , Mg 2+ , NH 4 + , NO 3 − , HPO 4 2− , the artificial neural networks (ANNs) were used in this study to accurately calculate the concentrations of these elements. Firstly, the error sources of the calculating element concentration were analyzed based on the data of six-ion measurement experiments. Subsequently, various optimization algorithms were compared to optimize back propagation and radial basis function ANNs. Finally, the results of mean relative errors (MREs) and recovery values show that ANNs can effectively reduce the measurement error of ion sensors. From the perspective of recovery values, the prediction error of all elements can be controlled within 15%. From the perspective of MRE, except for magnesium and phosphorus elements, the improved model prediction errors of other elements were also less than 10%." @default.
- W4383314747 created "2023-07-07" @default.
- W4383314747 creator A5013270044 @default.
- W4383314747 creator A5013915732 @default.
- W4383314747 creator A5033992808 @default.
- W4383314747 creator A5038553068 @default.
- W4383314747 creator A5040205022 @default.
- W4383314747 creator A5052905371 @default.
- W4383314747 creator A5071428154 @default.
- W4383314747 creator A5076331499 @default.
- W4383314747 date "2023-08-07" @default.
- W4383314747 modified "2023-09-25" @default.
- W4383314747 title "Research on artificial neural networks to accurately predict element concentrations in nutrient solutions" @default.
- W4383314747 cites W1961369090 @default.
- W4383314747 cites W1964102807 @default.
- W4383314747 cites W1982268612 @default.
- W4383314747 cites W2000822599 @default.
- W4383314747 cites W2064666612 @default.
- W4383314747 cites W2072955302 @default.
- W4383314747 cites W2074169638 @default.
- W4383314747 cites W2075860480 @default.
- W4383314747 cites W2094255443 @default.
- W4383314747 cites W2152195021 @default.
- W4383314747 cites W2154748553 @default.
- W4383314747 cites W2405091648 @default.
- W4383314747 cites W2460998784 @default.
- W4383314747 cites W2530691989 @default.
- W4383314747 cites W2606912331 @default.
- W4383314747 cites W2792343486 @default.
- W4383314747 cites W2955404827 @default.
- W4383314747 cites W2955909686 @default.
- W4383314747 cites W3003523526 @default.
- W4383314747 cites W3008644286 @default.
- W4383314747 cites W3011276556 @default.
- W4383314747 cites W3023235902 @default.
- W4383314747 cites W3080669156 @default.
- W4383314747 cites W3127670633 @default.
- W4383314747 cites W3216052796 @default.
- W4383314747 cites W4200263281 @default.
- W4383314747 cites W4205443616 @default.
- W4383314747 cites W4207066936 @default.
- W4383314747 cites W4240321558 @default.
- W4383314747 cites W4281754202 @default.
- W4383314747 cites W4283732487 @default.
- W4383314747 cites W4287879570 @default.
- W4383314747 cites W4295242492 @default.
- W4383314747 cites W4297497254 @default.
- W4383314747 cites W4297536001 @default.
- W4383314747 cites W4306644696 @default.
- W4383314747 cites W4313005747 @default.
- W4383314747 cites W4319068530 @default.
- W4383314747 cites W4321328194 @default.
- W4383314747 cites W4365448744 @default.
- W4383314747 doi "https://doi.org/10.1088/1361-6501/ace4e5" @default.
- W4383314747 hasPublicationYear "2023" @default.
- W4383314747 type Work @default.
- W4383314747 citedByCount "0" @default.
- W4383314747 crossrefType "journal-article" @default.
- W4383314747 hasAuthorship W4383314747A5013270044 @default.
- W4383314747 hasAuthorship W4383314747A5013915732 @default.
- W4383314747 hasAuthorship W4383314747A5033992808 @default.
- W4383314747 hasAuthorship W4383314747A5038553068 @default.
- W4383314747 hasAuthorship W4383314747A5040205022 @default.
- W4383314747 hasAuthorship W4383314747A5052905371 @default.
- W4383314747 hasAuthorship W4383314747A5071428154 @default.
- W4383314747 hasAuthorship W4383314747A5076331499 @default.
- W4383314747 hasConcept C11413529 @default.
- W4383314747 hasConcept C119857082 @default.
- W4383314747 hasConcept C122383733 @default.
- W4383314747 hasConcept C12713177 @default.
- W4383314747 hasConcept C154945302 @default.
- W4383314747 hasConcept C186060115 @default.
- W4383314747 hasConcept C191897082 @default.
- W4383314747 hasConcept C192562407 @default.
- W4383314747 hasConcept C41008148 @default.
- W4383314747 hasConcept C50644808 @default.
- W4383314747 hasConcept C510538283 @default.
- W4383314747 hasConcept C517785266 @default.
- W4383314747 hasConcept C543218039 @default.
- W4383314747 hasConcept C86803240 @default.
- W4383314747 hasConceptScore W4383314747C11413529 @default.
- W4383314747 hasConceptScore W4383314747C119857082 @default.
- W4383314747 hasConceptScore W4383314747C122383733 @default.
- W4383314747 hasConceptScore W4383314747C12713177 @default.
- W4383314747 hasConceptScore W4383314747C154945302 @default.
- W4383314747 hasConceptScore W4383314747C186060115 @default.
- W4383314747 hasConceptScore W4383314747C191897082 @default.
- W4383314747 hasConceptScore W4383314747C192562407 @default.
- W4383314747 hasConceptScore W4383314747C41008148 @default.
- W4383314747 hasConceptScore W4383314747C50644808 @default.
- W4383314747 hasConceptScore W4383314747C510538283 @default.
- W4383314747 hasConceptScore W4383314747C517785266 @default.
- W4383314747 hasConceptScore W4383314747C543218039 @default.
- W4383314747 hasConceptScore W4383314747C86803240 @default.
- W4383314747 hasFunder F4320321001 @default.
- W4383314747 hasFunder F4320335777 @default.
- W4383314747 hasIssue "11" @default.
- W4383314747 hasLocation W43833147471 @default.