Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383314963> ?p ?o ?g. }
- W4383314963 endingPage "993" @default.
- W4383314963 startingPage "980" @default.
- W4383314963 abstract "This paper introduces a method based on a deep neural network (DNN) that is perfectly capable of processing radar data from extremely thinned radar apertures. The proposed DNN processing can provide both aliasing-free radar imaging and super-resolution. The results are validated by measuring the detection performance on realistic simulation data and by evaluating the Point-Spread-function (PSF) and the target-separation performance on measured point-like targets. Also, a qualitative evaluation of a typical automotive scene is conducted. It is shown that this approach can outperform state-of-the-art subspace algorithms and also other existing machine learning solutions. The presented results suggest that machine learning approaches trained with sufficiently sophisticated virtual input data are a very promising alternative to compressed sensing and subspace approaches in radar signal processing. The key to this performance is that the DNN is trained using realistic simulation data that perfectly mimic a given sparse antenna radar array hardware as the input. As ground truth, ultra-high resolution data from an enhanced virtual radar are simulated. Contrary to other work, the DNN utilizes the complete radar cube and not only the antenna channel information at certain range-Doppler detections. After training, the proposed DNN is capable of sidelobe- and ambiguity-free imaging. It simultaneously delivers nearly the same resolution and image quality as would be achieved with a fully occupied array." @default.
- W4383314963 created "2023-07-07" @default.
- W4383314963 creator A5026943179 @default.
- W4383314963 creator A5055112930 @default.
- W4383314963 creator A5078720575 @default.
- W4383314963 date "2023-07-01" @default.
- W4383314963 modified "2023-10-14" @default.
- W4383314963 title "Super-Resolution Radar Imaging With Sparse Arrays Using a Deep Neural Network Trained With Enhanced Virtual Data" @default.
- W4383314963 cites W1797848497 @default.
- W4383314963 cites W2074873696 @default.
- W4383314963 cites W2098174516 @default.
- W4383314963 cites W2111917420 @default.
- W4383314963 cites W2113638573 @default.
- W4383314963 cites W2128131274 @default.
- W4383314963 cites W2142635246 @default.
- W4383314963 cites W2161666352 @default.
- W4383314963 cites W2163430887 @default.
- W4383314963 cites W2164390589 @default.
- W4383314963 cites W2357400875 @default.
- W4383314963 cites W2761190420 @default.
- W4383314963 cites W2810566158 @default.
- W4383314963 cites W2810871807 @default.
- W4383314963 cites W2888873612 @default.
- W4383314963 cites W2889495839 @default.
- W4383314963 cites W2894120608 @default.
- W4383314963 cites W2897361856 @default.
- W4383314963 cites W2902390373 @default.
- W4383314963 cites W2912493354 @default.
- W4383314963 cites W2940551187 @default.
- W4383314963 cites W2942306062 @default.
- W4383314963 cites W2963351448 @default.
- W4383314963 cites W2996476754 @default.
- W4383314963 cites W3033137211 @default.
- W4383314963 cites W3040360205 @default.
- W4383314963 cites W3094459479 @default.
- W4383314963 cites W3099746624 @default.
- W4383314963 cites W3100303558 @default.
- W4383314963 cites W3104690928 @default.
- W4383314963 cites W3109769428 @default.
- W4383314963 cites W3138516171 @default.
- W4383314963 cites W3174360484 @default.
- W4383314963 cites W3191534464 @default.
- W4383314963 cites W4205642952 @default.
- W4383314963 cites W4205988829 @default.
- W4383314963 cites W4213084171 @default.
- W4383314963 cites W4214943224 @default.
- W4383314963 cites W4224919974 @default.
- W4383314963 cites W4226377196 @default.
- W4383314963 cites W4234082531 @default.
- W4383314963 cites W4281628419 @default.
- W4383314963 cites W4285291722 @default.
- W4383314963 cites W4308085469 @default.
- W4383314963 cites W4312703155 @default.
- W4383314963 cites W4363674980 @default.
- W4383314963 cites W4366678686 @default.
- W4383314963 cites W4381745218 @default.
- W4383314963 doi "https://doi.org/10.1109/jmw.2023.3285610" @default.
- W4383314963 hasPublicationYear "2023" @default.
- W4383314963 type Work @default.
- W4383314963 citedByCount "0" @default.
- W4383314963 crossrefType "journal-article" @default.
- W4383314963 hasAuthorship W4383314963A5026943179 @default.
- W4383314963 hasAuthorship W4383314963A5055112930 @default.
- W4383314963 hasAuthorship W4383314963A5078720575 @default.
- W4383314963 hasBestOaLocation W43833149631 @default.
- W4383314963 hasConcept C10929652 @default.
- W4383314963 hasConcept C154945302 @default.
- W4383314963 hasConcept C197424946 @default.
- W4383314963 hasConcept C31972630 @default.
- W4383314963 hasConcept C32834561 @default.
- W4383314963 hasConcept C41008148 @default.
- W4383314963 hasConcept C50644808 @default.
- W4383314963 hasConcept C50878840 @default.
- W4383314963 hasConcept C554190296 @default.
- W4383314963 hasConcept C76155785 @default.
- W4383314963 hasConceptScore W4383314963C10929652 @default.
- W4383314963 hasConceptScore W4383314963C154945302 @default.
- W4383314963 hasConceptScore W4383314963C197424946 @default.
- W4383314963 hasConceptScore W4383314963C31972630 @default.
- W4383314963 hasConceptScore W4383314963C32834561 @default.
- W4383314963 hasConceptScore W4383314963C41008148 @default.
- W4383314963 hasConceptScore W4383314963C50644808 @default.
- W4383314963 hasConceptScore W4383314963C50878840 @default.
- W4383314963 hasConceptScore W4383314963C554190296 @default.
- W4383314963 hasConceptScore W4383314963C76155785 @default.
- W4383314963 hasIssue "3" @default.
- W4383314963 hasLocation W43833149631 @default.
- W4383314963 hasLocation W43833149632 @default.
- W4383314963 hasOpenAccess W4383314963 @default.
- W4383314963 hasPrimaryLocation W43833149631 @default.
- W4383314963 hasRelatedWork W1891287906 @default.
- W4383314963 hasRelatedWork W1969923398 @default.
- W4383314963 hasRelatedWork W2036807459 @default.
- W4383314963 hasRelatedWork W2107116274 @default.
- W4383314963 hasRelatedWork W2166024367 @default.
- W4383314963 hasRelatedWork W274369200 @default.
- W4383314963 hasRelatedWork W2755342338 @default.
- W4383314963 hasRelatedWork W2772917594 @default.