Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383334197> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4383334197 abstract "Machine learning (ML) is increasingly adopted to support the production process of surface-mounted electronics assembly technology (SMT). In the literature, extensive research was carried out to enhance automated optical inspection (AOI) by applying ML algorithms, like artificial neural networks. However, predicting production defects based on data from the sensors built into the production equipment is still not that widespread. Furthermore, applying ML-based approaches may allow the optimization of production control by fine-tuning process parameters of stencil printing or component placement, for example. Many research papers were surveyed to identify the strong and weak points of current approaches in this area. A clear overview was given to aid the proper classification of recent results and the applicability of ML-based methods in SMT. Our results contain not only the review of multiple approaches, but a comparison of the numerical results, the complexity of the experimental environment and the extent of applicability are also included." @default.
- W4383334197 created "2023-07-07" @default.
- W4383334197 creator A5010915863 @default.
- W4383334197 creator A5032748749 @default.
- W4383334197 creator A5068674145 @default.
- W4383334197 creator A5080445032 @default.
- W4383334197 date "2023-05-10" @default.
- W4383334197 modified "2023-09-27" @default.
- W4383334197 title "Short Review on Machine Learning Optimization Methods in Surface Mounted Electronics Assembly Technologies" @default.
- W4383334197 cites W2074376150 @default.
- W4383334197 cites W2606884892 @default.
- W4383334197 cites W2756160280 @default.
- W4383334197 cites W2782731030 @default.
- W4383334197 cites W2790214586 @default.
- W4383334197 cites W2808113630 @default.
- W4383334197 cites W2911303106 @default.
- W4383334197 cites W2927822717 @default.
- W4383334197 cites W2947416288 @default.
- W4383334197 cites W2959879323 @default.
- W4383334197 cites W3005357521 @default.
- W4383334197 cites W3008724992 @default.
- W4383334197 cites W3027659342 @default.
- W4383334197 cites W3083984913 @default.
- W4383334197 cites W4200265640 @default.
- W4383334197 cites W4205743778 @default.
- W4383334197 cites W4210997624 @default.
- W4383334197 cites W4285008272 @default.
- W4383334197 doi "https://doi.org/10.1109/isse57496.2023.10168524" @default.
- W4383334197 hasPublicationYear "2023" @default.
- W4383334197 type Work @default.
- W4383334197 citedByCount "0" @default.
- W4383334197 crossrefType "proceedings-article" @default.
- W4383334197 hasAuthorship W4383334197A5010915863 @default.
- W4383334197 hasAuthorship W4383334197A5032748749 @default.
- W4383334197 hasAuthorship W4383334197A5068674145 @default.
- W4383334197 hasAuthorship W4383334197A5080445032 @default.
- W4383334197 hasConcept C111919701 @default.
- W4383334197 hasConcept C119599485 @default.
- W4383334197 hasConcept C119857082 @default.
- W4383334197 hasConcept C120793396 @default.
- W4383334197 hasConcept C121332964 @default.
- W4383334197 hasConcept C127413603 @default.
- W4383334197 hasConcept C138331895 @default.
- W4383334197 hasConcept C139719470 @default.
- W4383334197 hasConcept C154945302 @default.
- W4383334197 hasConcept C162324750 @default.
- W4383334197 hasConcept C168167062 @default.
- W4383334197 hasConcept C2776584680 @default.
- W4383334197 hasConcept C2778348673 @default.
- W4383334197 hasConcept C41008148 @default.
- W4383334197 hasConcept C459310 @default.
- W4383334197 hasConcept C50644808 @default.
- W4383334197 hasConcept C76752949 @default.
- W4383334197 hasConcept C97355855 @default.
- W4383334197 hasConcept C98045186 @default.
- W4383334197 hasConceptScore W4383334197C111919701 @default.
- W4383334197 hasConceptScore W4383334197C119599485 @default.
- W4383334197 hasConceptScore W4383334197C119857082 @default.
- W4383334197 hasConceptScore W4383334197C120793396 @default.
- W4383334197 hasConceptScore W4383334197C121332964 @default.
- W4383334197 hasConceptScore W4383334197C127413603 @default.
- W4383334197 hasConceptScore W4383334197C138331895 @default.
- W4383334197 hasConceptScore W4383334197C139719470 @default.
- W4383334197 hasConceptScore W4383334197C154945302 @default.
- W4383334197 hasConceptScore W4383334197C162324750 @default.
- W4383334197 hasConceptScore W4383334197C168167062 @default.
- W4383334197 hasConceptScore W4383334197C2776584680 @default.
- W4383334197 hasConceptScore W4383334197C2778348673 @default.
- W4383334197 hasConceptScore W4383334197C41008148 @default.
- W4383334197 hasConceptScore W4383334197C459310 @default.
- W4383334197 hasConceptScore W4383334197C50644808 @default.
- W4383334197 hasConceptScore W4383334197C76752949 @default.
- W4383334197 hasConceptScore W4383334197C97355855 @default.
- W4383334197 hasConceptScore W4383334197C98045186 @default.
- W4383334197 hasLocation W43833341971 @default.
- W4383334197 hasOpenAccess W4383334197 @default.
- W4383334197 hasPrimaryLocation W43833341971 @default.
- W4383334197 hasRelatedWork W2078640098 @default.
- W4383334197 hasRelatedWork W2137864359 @default.
- W4383334197 hasRelatedWork W2146033696 @default.
- W4383334197 hasRelatedWork W2189035983 @default.
- W4383334197 hasRelatedWork W2192990818 @default.
- W4383334197 hasRelatedWork W2371393899 @default.
- W4383334197 hasRelatedWork W2497986104 @default.
- W4383334197 hasRelatedWork W2970312242 @default.
- W4383334197 hasRelatedWork W1629725936 @default.
- W4383334197 hasRelatedWork W1939309165 @default.
- W4383334197 isParatext "false" @default.
- W4383334197 isRetracted "false" @default.
- W4383334197 workType "article" @default.