Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383336519> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4383336519 endingPage "105525" @default.
- W4383336519 startingPage "105525" @default.
- W4383336519 abstract "Most of the existing deep learning-based crack identification models can achieve high accuracy when being trained and tested using data split from the same dataset with minimal noise, while perform poorly on field monitoring data with certain level of noise. This research developed a hybrid attention convolutional neural network (HACNN) for rock microcrack identification with enhanced anti-noise ability for distributed fibre optic sensing data. A hybrid attention module was designed and placed next to some certain convolutional layers to enhance the nonlinear representation ability of the proposed model. Two training interference strategies, namely small mini-batch training and adding dropout in the first convolutional layer, were employed to interfere with the training of the HACNN to enhance its robustness against noise. A series of experiments are designed based on the properties of the two training interference strategies to optimize the model parameters. Results showed that the optimized HACNN achieved higher accuracy on datasets with different signal-to-noise ratios compared to other machine learning algorithms, including the support vector machine, the multilayer perceptron, and an existing one-dimensional convolutional neural network. This research demonstrates the potential of establishing a robust DL-based model for identification of rock microcracks from noisy distributed fibre sensing optic data, even when training the model only with a smoothed dataset." @default.
- W4383336519 created "2023-07-07" @default.
- W4383336519 creator A5021616204 @default.
- W4383336519 creator A5041310778 @default.
- W4383336519 creator A5049578987 @default.
- W4383336519 creator A5049948440 @default.
- W4383336519 creator A5087847070 @default.
- W4383336519 date "2023-10-01" @default.
- W4383336519 modified "2023-10-18" @default.
- W4383336519 title "A deep learning-based approach with anti-noise ability for identification of rock microcracks using distributed fibre optic sensing data" @default.
- W4383336519 cites W2017825754 @default.
- W4383336519 cites W2146842127 @default.
- W4383336519 cites W2583560922 @default.
- W4383336519 cites W2801896134 @default.
- W4383336519 cites W2918137593 @default.
- W4383336519 cites W2977117446 @default.
- W4383336519 cites W2998268921 @default.
- W4383336519 cites W3016213102 @default.
- W4383336519 cites W3037288284 @default.
- W4383336519 cites W3096831136 @default.
- W4383336519 cites W3098048737 @default.
- W4383336519 cites W3153618304 @default.
- W4383336519 cites W3153805502 @default.
- W4383336519 cites W3177630080 @default.
- W4383336519 cites W3202970622 @default.
- W4383336519 cites W4308926490 @default.
- W4383336519 cites W4321792509 @default.
- W4383336519 cites W4362722442 @default.
- W4383336519 cites W4365517451 @default.
- W4383336519 cites W4366815703 @default.
- W4383336519 doi "https://doi.org/10.1016/j.ijrmms.2023.105525" @default.
- W4383336519 hasPublicationYear "2023" @default.
- W4383336519 type Work @default.
- W4383336519 citedByCount "0" @default.
- W4383336519 crossrefType "journal-article" @default.
- W4383336519 hasAuthorship W4383336519A5021616204 @default.
- W4383336519 hasAuthorship W4383336519A5041310778 @default.
- W4383336519 hasAuthorship W4383336519A5049578987 @default.
- W4383336519 hasAuthorship W4383336519A5049948440 @default.
- W4383336519 hasAuthorship W4383336519A5087847070 @default.
- W4383336519 hasConcept C104317684 @default.
- W4383336519 hasConcept C108583219 @default.
- W4383336519 hasConcept C115961682 @default.
- W4383336519 hasConcept C119857082 @default.
- W4383336519 hasConcept C12267149 @default.
- W4383336519 hasConcept C127162648 @default.
- W4383336519 hasConcept C153180895 @default.
- W4383336519 hasConcept C154945302 @default.
- W4383336519 hasConcept C179717631 @default.
- W4383336519 hasConcept C185592680 @default.
- W4383336519 hasConcept C31258907 @default.
- W4383336519 hasConcept C32022120 @default.
- W4383336519 hasConcept C41008148 @default.
- W4383336519 hasConcept C50644808 @default.
- W4383336519 hasConcept C55493867 @default.
- W4383336519 hasConcept C60908668 @default.
- W4383336519 hasConcept C63479239 @default.
- W4383336519 hasConcept C81363708 @default.
- W4383336519 hasConcept C99498987 @default.
- W4383336519 hasConceptScore W4383336519C104317684 @default.
- W4383336519 hasConceptScore W4383336519C108583219 @default.
- W4383336519 hasConceptScore W4383336519C115961682 @default.
- W4383336519 hasConceptScore W4383336519C119857082 @default.
- W4383336519 hasConceptScore W4383336519C12267149 @default.
- W4383336519 hasConceptScore W4383336519C127162648 @default.
- W4383336519 hasConceptScore W4383336519C153180895 @default.
- W4383336519 hasConceptScore W4383336519C154945302 @default.
- W4383336519 hasConceptScore W4383336519C179717631 @default.
- W4383336519 hasConceptScore W4383336519C185592680 @default.
- W4383336519 hasConceptScore W4383336519C31258907 @default.
- W4383336519 hasConceptScore W4383336519C32022120 @default.
- W4383336519 hasConceptScore W4383336519C41008148 @default.
- W4383336519 hasConceptScore W4383336519C50644808 @default.
- W4383336519 hasConceptScore W4383336519C55493867 @default.
- W4383336519 hasConceptScore W4383336519C60908668 @default.
- W4383336519 hasConceptScore W4383336519C63479239 @default.
- W4383336519 hasConceptScore W4383336519C81363708 @default.
- W4383336519 hasConceptScore W4383336519C99498987 @default.
- W4383336519 hasLocation W43833365191 @default.
- W4383336519 hasOpenAccess W4383336519 @default.
- W4383336519 hasPrimaryLocation W43833365191 @default.
- W4383336519 hasRelatedWork W1501213224 @default.
- W4383336519 hasRelatedWork W3106494386 @default.
- W4383336519 hasRelatedWork W3168994312 @default.
- W4383336519 hasRelatedWork W3185179407 @default.
- W4383336519 hasRelatedWork W3211546796 @default.
- W4383336519 hasRelatedWork W4231994957 @default.
- W4383336519 hasRelatedWork W4285741730 @default.
- W4383336519 hasRelatedWork W4322750901 @default.
- W4383336519 hasRelatedWork W4381616756 @default.
- W4383336519 hasRelatedWork W3128183380 @default.
- W4383336519 hasVolume "170" @default.
- W4383336519 isParatext "false" @default.
- W4383336519 isRetracted "false" @default.
- W4383336519 workType "article" @default.