Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383336911> ?p ?o ?g. }
- W4383336911 endingPage "105208" @default.
- W4383336911 startingPage "105208" @default.
- W4383336911 abstract "The multi-verse optimizer (MVO) algorithm has been applied to image segmentation, feature selection, engineering problems, and many other fields. MVO, like other metaheuristic algorithms, still has shortcomings, such as poor convergence speed and quickly falling into local optimum. To address these concerns, this paper proposes CBQMVO, extending the original MVO algorithm with three strategies: covariance matrix adaptation strategy (CMAES), biogeography-based learning strategy (BLS), quasi-reflected and quasi-opposition strategy (QROS). CMAES can make the algorithm approach quickly the current local optimal solution and accelerate the convergence. BLS can enrich the population’s diversity to discourage prematurely and assist the algorithm in jumping out of the local optimum. QROS can increase the probability of search particles falling near the optimal solution. A set of experiments were conducted to evaluate the performance of the CBQMVO. First, the original algorithm comparison experiment on IEEE CEC2014 includes strategy comparison, dimension comparison, exploration/exploitation balance, and population diversity experiments. Then, the advanced algorithm comparison experiment was carried out on IEEE CEC 2014. Furthermore, the champion algorithm comparison experiment was conducted on IEEE CEC2017 and IEEE CEC2020. A series of comparative experimental data demonstrate that CBQMVO has high performance, especially on some unimodal and complex competition functions. In addition, this paper also applied CBQMVO to implement Renyi’s entropy multilevel threshold image segmentation based on the non-local mean 2D histogram (RMIS-2D) on breast cancer pathologic images. Compared with other metaheuristic algorithms and Kapur’s entropy image segmentation, the proposed scheme in this paper has a better segmentation effect." @default.
- W4383336911 created "2023-07-07" @default.
- W4383336911 creator A5006651636 @default.
- W4383336911 creator A5024138459 @default.
- W4383336911 creator A5028441474 @default.
- W4383336911 creator A5059208266 @default.
- W4383336911 creator A5065661976 @default.
- W4383336911 date "2023-09-01" @default.
- W4383336911 modified "2023-10-16" @default.
- W4383336911 title "A solution to the stagnation of multi-verse optimization: An efficient method for breast cancer pathologic images segmentation" @default.
- W4383336911 cites W1547714734 @default.
- W4383336911 cites W1595159159 @default.
- W4383336911 cites W1972544340 @default.
- W4383336911 cites W2023438527 @default.
- W4383336911 cites W2031183907 @default.
- W4383336911 cites W2042253843 @default.
- W4383336911 cites W2058849546 @default.
- W4383336911 cites W2061438946 @default.
- W4383336911 cites W2072955302 @default.
- W4383336911 cites W2096166399 @default.
- W4383336911 cites W2112036188 @default.
- W4383336911 cites W2114770744 @default.
- W4383336911 cites W2120627761 @default.
- W4383336911 cites W2122016301 @default.
- W4383336911 cites W2127789101 @default.
- W4383336911 cites W2131613989 @default.
- W4383336911 cites W2133059825 @default.
- W4383336911 cites W2133665775 @default.
- W4383336911 cites W2137340504 @default.
- W4383336911 cites W2141983208 @default.
- W4383336911 cites W2146713522 @default.
- W4383336911 cites W2151554678 @default.
- W4383336911 cites W2155529731 @default.
- W4383336911 cites W2344480160 @default.
- W4383336911 cites W2395611524 @default.
- W4383336911 cites W2518812438 @default.
- W4383336911 cites W2560552599 @default.
- W4383336911 cites W2564782580 @default.
- W4383336911 cites W2571079985 @default.
- W4383336911 cites W2605396865 @default.
- W4383336911 cites W2606234828 @default.
- W4383336911 cites W2724549444 @default.
- W4383336911 cites W2729414995 @default.
- W4383336911 cites W2730253853 @default.
- W4383336911 cites W2745838971 @default.
- W4383336911 cites W2790564346 @default.
- W4383336911 cites W2791741862 @default.
- W4383336911 cites W2792526072 @default.
- W4383336911 cites W2792689221 @default.
- W4383336911 cites W2793992319 @default.
- W4383336911 cites W2902016849 @default.
- W4383336911 cites W2911633892 @default.
- W4383336911 cites W2919979744 @default.
- W4383336911 cites W2937396090 @default.
- W4383336911 cites W2939714884 @default.
- W4383336911 cites W2947263797 @default.
- W4383336911 cites W2953977439 @default.
- W4383336911 cites W2974798220 @default.
- W4383336911 cites W2995254025 @default.
- W4383336911 cites W2996373059 @default.
- W4383336911 cites W3003349567 @default.
- W4383336911 cites W3025826476 @default.
- W4383336911 cites W3087867645 @default.
- W4383336911 cites W3092664572 @default.
- W4383336911 cites W3094221378 @default.
- W4383336911 cites W3094536368 @default.
- W4383336911 cites W3096193467 @default.
- W4383336911 cites W3106651418 @default.
- W4383336911 cites W3111096857 @default.
- W4383336911 cites W3119351363 @default.
- W4383336911 cites W3121786534 @default.
- W4383336911 cites W3130908143 @default.
- W4383336911 cites W3134651880 @default.
- W4383336911 cites W3154719286 @default.
- W4383336911 cites W3157477123 @default.
- W4383336911 cites W3164005591 @default.
- W4383336911 cites W3169902780 @default.
- W4383336911 cites W3183338453 @default.
- W4383336911 cites W3202056946 @default.
- W4383336911 cites W3204514574 @default.
- W4383336911 cites W3208125829 @default.
- W4383336911 cites W3211639065 @default.
- W4383336911 cites W4200372140 @default.
- W4383336911 cites W4206081481 @default.
- W4383336911 cites W4254561784 @default.
- W4383336911 cites W4282966553 @default.
- W4383336911 cites W4283687612 @default.
- W4383336911 cites W4307293208 @default.
- W4383336911 cites W4307593471 @default.
- W4383336911 cites W4308946426 @default.
- W4383336911 cites W4309284213 @default.
- W4383336911 cites W4313476913 @default.
- W4383336911 cites W4320487090 @default.
- W4383336911 cites W643094741 @default.
- W4383336911 doi "https://doi.org/10.1016/j.bspc.2023.105208" @default.
- W4383336911 hasPublicationYear "2023" @default.
- W4383336911 type Work @default.
- W4383336911 citedByCount "2" @default.