Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383337041> ?p ?o ?g. }
- W4383337041 endingPage "108011" @default.
- W4383337041 startingPage "108011" @default.
- W4383337041 abstract "Leaf chlorophyll content (LCC) is a distinct indicator of crop health status used to estimate nutritional stress, diseases, and pests. Thus, accurate LCC information can assist in the monitoring of crop growth. The combined use of hyperspectral and deep learning techniques (e.g., convolutional neural network [CNN] and transfer learning [TL]) can improve the performance of crop LCC estimation. We propose a hyperspectral-to-image transform (HIT) technique for converting canopy hyperspectral reflectance into 2D images. We designed a CNN architecture called LCCNet that fuses the deep and shallow features of CNNs to improve soybean LCC estimation. This study evaluated the combined use of hyperspectral remote sensing (RS), HIT, CNN, and TL techniques to estimate soybean LCC for multiple growth stages. The LCCNet was pre-trained based on a simulated dataset (n = 114,048) from the PROSAIL radiative transfer model (RTM) and used as prior knowledge for this work. The soybean canopy hyperspectral RS dataset (n = 910) was obtained using a FieldSpec 3 spectrometer. The knowledge gained while learning to estimate LCC from PROSAIL RTM was applied when estimating field soybean LCC (Dualex readings). TL was used to enhance the soybean estimation model, called the Soybean-LCCNet (RTM + HIT + CNN + TL) model. We tested the LCC (Dualex readings) estimation performance using (a) HIT + CNN, (b) LCCNet (RTM + HIT + CNN), (c) Soybean-LCCNet (RTM + HIT + CNN + TL), and (d) widely used LCC spectral features + partial least squares regression (PLSR). Four methods were ranked based on their LCC estimation performance: Soybean-LCCNet (R2 = 0.78, RMSE = 4.13 (Dualex readings)) > HIT + CNN (R2 = 0.75, RMSE = 4.41 (Dualex readings)) > PLSR-based method (R2 = 0.61, RMSE = 5.39 (Dualex readings)) > LCCNet (R2 = 0.53, RMSE = 7.11 (Dualex readings)). The main conclusions of this work are as follows: (1) HIT + CNN can provide a more robust LCC estimation performance than the widely used LCC SIs; (2) Fusing the deep and shallow features of CNNs can improve the performance of RS soybean LCC (Dualex readings) estimation; and (3) Soybean-LCCNet can reuse the CNN layer information of a pre-trained LCCNet based on a PROSAIL RTM dataset and improve the soybean LCC estimation performance." @default.
- W4383337041 created "2023-07-07" @default.
- W4383337041 creator A5005698391 @default.
- W4383337041 creator A5020713851 @default.
- W4383337041 creator A5024240500 @default.
- W4383337041 creator A5026930135 @default.
- W4383337041 creator A5039880991 @default.
- W4383337041 creator A5043204543 @default.
- W4383337041 creator A5054691132 @default.
- W4383337041 creator A5056724113 @default.
- W4383337041 creator A5067332063 @default.
- W4383337041 creator A5081731800 @default.
- W4383337041 date "2023-08-01" @default.
- W4383337041 modified "2023-10-14" @default.
- W4383337041 title "Hyperspectral-to-image transform and CNN transfer learning enhancing soybean LCC estimation" @default.
- W4383337041 cites W1483386591 @default.
- W4383337041 cites W1971070487 @default.
- W4383337041 cites W1985555755 @default.
- W4383337041 cites W1986812364 @default.
- W4383337041 cites W2001948755 @default.
- W4383337041 cites W2012686349 @default.
- W4383337041 cites W2025967407 @default.
- W4383337041 cites W2031967823 @default.
- W4383337041 cites W2093280389 @default.
- W4383337041 cites W2109404357 @default.
- W4383337041 cites W2111947859 @default.
- W4383337041 cites W2121025745 @default.
- W4383337041 cites W2129719999 @default.
- W4383337041 cites W2159961845 @default.
- W4383337041 cites W2324540353 @default.
- W4383337041 cites W2516419770 @default.
- W4383337041 cites W2558901835 @default.
- W4383337041 cites W2596051487 @default.
- W4383337041 cites W2736116482 @default.
- W4383337041 cites W2788945171 @default.
- W4383337041 cites W2806394060 @default.
- W4383337041 cites W2808437249 @default.
- W4383337041 cites W2843415492 @default.
- W4383337041 cites W2896040553 @default.
- W4383337041 cites W2913846004 @default.
- W4383337041 cites W2920653747 @default.
- W4383337041 cites W2921970948 @default.
- W4383337041 cites W2953308748 @default.
- W4383337041 cites W2967229946 @default.
- W4383337041 cites W2979332295 @default.
- W4383337041 cites W2983376237 @default.
- W4383337041 cites W2991069154 @default.
- W4383337041 cites W3011636776 @default.
- W4383337041 cites W3022095143 @default.
- W4383337041 cites W3025950539 @default.
- W4383337041 cites W3035925134 @default.
- W4383337041 cites W3046281038 @default.
- W4383337041 cites W3081171346 @default.
- W4383337041 cites W3128430657 @default.
- W4383337041 cites W3138170345 @default.
- W4383337041 cites W3159918785 @default.
- W4383337041 cites W3181658859 @default.
- W4383337041 cites W3188615767 @default.
- W4383337041 cites W3196557703 @default.
- W4383337041 cites W3204363700 @default.
- W4383337041 cites W3205772352 @default.
- W4383337041 cites W3216831469 @default.
- W4383337041 cites W4214943545 @default.
- W4383337041 cites W4220809330 @default.
- W4383337041 cites W4221038349 @default.
- W4383337041 cites W4224241018 @default.
- W4383337041 cites W4224536765 @default.
- W4383337041 cites W4224997219 @default.
- W4383337041 cites W4280648889 @default.
- W4383337041 cites W4295203042 @default.
- W4383337041 cites W4319781481 @default.
- W4383337041 cites W51106753 @default.
- W4383337041 cites W969525172 @default.
- W4383337041 doi "https://doi.org/10.1016/j.compag.2023.108011" @default.
- W4383337041 hasPublicationYear "2023" @default.
- W4383337041 type Work @default.
- W4383337041 citedByCount "2" @default.
- W4383337041 countsByYear W43833370412023 @default.
- W4383337041 crossrefType "journal-article" @default.
- W4383337041 hasAuthorship W4383337041A5005698391 @default.
- W4383337041 hasAuthorship W4383337041A5020713851 @default.
- W4383337041 hasAuthorship W4383337041A5024240500 @default.
- W4383337041 hasAuthorship W4383337041A5026930135 @default.
- W4383337041 hasAuthorship W4383337041A5039880991 @default.
- W4383337041 hasAuthorship W4383337041A5043204543 @default.
- W4383337041 hasAuthorship W4383337041A5054691132 @default.
- W4383337041 hasAuthorship W4383337041A5056724113 @default.
- W4383337041 hasAuthorship W4383337041A5067332063 @default.
- W4383337041 hasAuthorship W4383337041A5081731800 @default.
- W4383337041 hasConcept C101000010 @default.
- W4383337041 hasConcept C105795698 @default.
- W4383337041 hasConcept C119857082 @default.
- W4383337041 hasConcept C121332964 @default.
- W4383337041 hasConcept C139945424 @default.
- W4383337041 hasConcept C150899416 @default.
- W4383337041 hasConcept C153180895 @default.
- W4383337041 hasConcept C154945302 @default.
- W4383337041 hasConcept C159078339 @default.