Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383341652> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4383341652 endingPage "1048" @default.
- W4383341652 startingPage "1048" @default.
- W4383341652 abstract "In this work, we compute the number of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mo stretchy=false>[</mml:mo><mml:mo stretchy=false>[</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=false>]</mml:mo><mml:msub><mml:mo stretchy=false>]</mml:mo><mml:mi>d</mml:mi></mml:msub></mml:math> stabilizer codes made up of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi></mml:math>-dimensional qudits, for arbitrary positive integers <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi></mml:math>. In a seminal work by Gross cite{Gross2006} the number of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mo stretchy=false>[</mml:mo><mml:mo stretchy=false>[</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=false>]</mml:mo><mml:msub><mml:mo stretchy=false>]</mml:mo><mml:mi>d</mml:mi></mml:msub></mml:math> stabilizer codes was computed for the case when <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi></mml:math> is a prime (or the power of a prime, i.e., <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mi>p</mml:mi><mml:mi>m</mml:mi></mml:msup></mml:math>, but when the qudits are Galois-qudits). The proof in cite{Gross2006} is inapplicable to the non-prime case. For our proof, we introduce a group structure to <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mo stretchy=false>[</mml:mo><mml:mo stretchy=false>[</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=false>]</mml:mo><mml:msub><mml:mo stretchy=false>]</mml:mo><mml:mi>d</mml:mi></mml:msub></mml:math> codes, and use this in conjunction with the Chinese remainder theorem to count the number of <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mo stretchy=false>[</mml:mo><mml:mo stretchy=false>[</mml:mo><mml:mi>n</mml:mi><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy=false>]</mml:mo><mml:msub><mml:mo stretchy=false>]</mml:mo><mml:mi>d</mml:mi></mml:msub></mml:math> codes. Our work overlaps with cite{Gross2006} when <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi></mml:math> is a prime and in this case our results match exactly, but the results differ for the more generic case. Despite that, the overall order of magnitude of the number of stabilizer codes scales agnostic of whether the dimension is prime or non-prime. This is surprising since the method employed to count the number of stabilizer states (or more generally stabilizer codes) depends on whether <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>d</mml:mi></mml:math> is prime or not. The cardinality of stabilizer states, which was so far known only for the prime-dimensional case (and the Galois qudit prime-power dimensional case) plays an important role as a quantifier in many topics in quantum computing. Salient among these are the resource theory of magic, design theory, de Finetti theorem for stabilizer states, the study and optimisation of the classical simulability of Clifford circuits, the study of quantum contextuality of small-dimensional systems and the study of Wigner-functions. Our work makes available this quantifier for the generic case, and thus is an important step needed to place results for quantum computing with non-prime dimensional quantum systems on the same pedestal as prime-dimensional systems." @default.
- W4383341652 created "2023-07-07" @default.
- W4383341652 creator A5002019497 @default.
- W4383341652 creator A5034237749 @default.
- W4383341652 creator A5046523140 @default.
- W4383341652 creator A5053767152 @default.
- W4383341652 creator A5083737500 @default.
- W4383341652 creator A5088745677 @default.
- W4383341652 date "2023-07-06" @default.
- W4383341652 modified "2023-09-26" @default.
- W4383341652 title "Counting stabiliser codes for arbitrary dimension" @default.
- W4383341652 cites W1520004449 @default.
- W4383341652 cites W1532834996 @default.
- W4383341652 cites W1731114062 @default.
- W4383341652 cites W1966619759 @default.
- W4383341652 cites W1973237732 @default.
- W4383341652 cites W1977809994 @default.
- W4383341652 cites W1998169277 @default.
- W4383341652 cites W2038129354 @default.
- W4383341652 cites W2039302501 @default.
- W4383341652 cites W2044949772 @default.
- W4383341652 cites W2046551711 @default.
- W4383341652 cites W2052146120 @default.
- W4383341652 cites W2058124214 @default.
- W4383341652 cites W2060887031 @default.
- W4383341652 cites W2102532141 @default.
- W4383341652 cites W2109785828 @default.
- W4383341652 cites W2170620327 @default.
- W4383341652 cites W2408216867 @default.
- W4383341652 cites W2524307097 @default.
- W4383341652 cites W2780472999 @default.
- W4383341652 cites W2900580483 @default.
- W4383341652 cites W2949227982 @default.
- W4383341652 cites W2990961515 @default.
- W4383341652 cites W3098543194 @default.
- W4383341652 cites W3099154171 @default.
- W4383341652 cites W3100246962 @default.
- W4383341652 cites W3100536493 @default.
- W4383341652 cites W3100704244 @default.
- W4383341652 cites W3101152285 @default.
- W4383341652 cites W3101778975 @default.
- W4383341652 cites W3102350187 @default.
- W4383341652 cites W3103699324 @default.
- W4383341652 cites W3105454500 @default.
- W4383341652 cites W3105943350 @default.
- W4383341652 cites W3112719526 @default.
- W4383341652 cites W3135379090 @default.
- W4383341652 cites W3181290353 @default.
- W4383341652 cites W3206309997 @default.
- W4383341652 cites W4213076761 @default.
- W4383341652 cites W4230314857 @default.
- W4383341652 cites W4233185505 @default.
- W4383341652 cites W4249726483 @default.
- W4383341652 cites W4252614677 @default.
- W4383341652 cites W4287590798 @default.
- W4383341652 cites W4292806204 @default.
- W4383341652 cites W4294640627 @default.
- W4383341652 cites W593489687 @default.
- W4383341652 cites W598521979 @default.
- W4383341652 cites W748602451 @default.
- W4383341652 cites W2023508725 @default.
- W4383341652 doi "https://doi.org/10.22331/q-2023-07-06-1048" @default.
- W4383341652 hasPublicationYear "2023" @default.
- W4383341652 type Work @default.
- W4383341652 citedByCount "0" @default.
- W4383341652 crossrefType "journal-article" @default.
- W4383341652 hasAuthorship W4383341652A5002019497 @default.
- W4383341652 hasAuthorship W4383341652A5034237749 @default.
- W4383341652 hasAuthorship W4383341652A5046523140 @default.
- W4383341652 hasAuthorship W4383341652A5053767152 @default.
- W4383341652 hasAuthorship W4383341652A5083737500 @default.
- W4383341652 hasAuthorship W4383341652A5088745677 @default.
- W4383341652 hasBestOaLocation W43833416521 @default.
- W4383341652 hasConcept C11413529 @default.
- W4383341652 hasConcept C154945302 @default.
- W4383341652 hasConcept C41008148 @default.
- W4383341652 hasConceptScore W4383341652C11413529 @default.
- W4383341652 hasConceptScore W4383341652C154945302 @default.
- W4383341652 hasConceptScore W4383341652C41008148 @default.
- W4383341652 hasLocation W43833416521 @default.
- W4383341652 hasLocation W43833416522 @default.
- W4383341652 hasOpenAccess W4383341652 @default.
- W4383341652 hasPrimaryLocation W43833416521 @default.
- W4383341652 hasRelatedWork W2051487156 @default.
- W4383341652 hasRelatedWork W2052122378 @default.
- W4383341652 hasRelatedWork W2053286651 @default.
- W4383341652 hasRelatedWork W2073681303 @default.
- W4383341652 hasRelatedWork W2317200988 @default.
- W4383341652 hasRelatedWork W2544423928 @default.
- W4383341652 hasRelatedWork W2947381795 @default.
- W4383341652 hasRelatedWork W2181413294 @default.
- W4383341652 hasRelatedWork W2181743346 @default.
- W4383341652 hasRelatedWork W2187401768 @default.
- W4383341652 hasVolume "7" @default.
- W4383341652 isParatext "false" @default.
- W4383341652 isRetracted "false" @default.
- W4383341652 workType "article" @default.