Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383341736> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4383341736 endingPage "589" @default.
- W4383341736 startingPage "582" @default.
- W4383341736 abstract "Around the world, millions of women are diagnosed with cervical cancer each year. Early detection is very important to produce a better overall quality of life for those diagnosed with the disease and reduce the burden on the healthcare system. In recent years, the field of machine learning (ML) has been developing methods that can improve the accuracy of detecting cervical cancer. This paper presents a new approach to this problem by using a combination of image segmentation and feature extraction techniques. The proposed approach is divided into three phases. The first stage involves image segmentation, which is performed to extract the regions of interest from the input image. The second stage is comprised of extracting the features from the ROI with the help of the Histogram and Hu Moments techniques. The techniques used in this approach, namely the Hu Moments and Histogram techniques, respectively, can capture the shape information in the ROI. In the third stage of the project, we use a hybrid approach to classify the image. The proposed model is composed of several base classifiers, which are trained on varying subsets of the features that were extracted. These resulting classifiers then make a classification decision. We tested the proposed model against a large dataset of images for cervical cancer. The results of the experiments revealed that it performed better than the existing methods in detecting the disease. It was able to achieve an accuracy of 96.5%, an F1 score of 96.9%, and a recall of 96.7%. The proposed model was successful in accomplishing a remarkable accuracy of 96.5%, making it an ideal candidate for use in the detection of cervical cancer. It was also able to perform feature extraction using the Histogram techniques and image segmentation. The proposed method could help medical professionals improve the diagnosis and reduce the burden of this disease on women worldwide." @default.
- W4383341736 created "2023-07-07" @default.
- W4383341736 creator A5000626796 @default.
- W4383341736 creator A5083773857 @default.
- W4383341736 date "2023-06-30" @default.
- W4383341736 modified "2023-10-18" @default.
- W4383341736 title "A Novel Approach to Cervical Cancer Detection Using Hybrid Stacked Ensemble Models and Feature Selection" @default.
- W4383341736 cites W2294639133 @default.
- W4383341736 cites W2803275818 @default.
- W4383341736 cites W2955181859 @default.
- W4383341736 cites W2970344819 @default.
- W4383341736 cites W2993517244 @default.
- W4383341736 cites W3119770709 @default.
- W4383341736 cites W3193266809 @default.
- W4383341736 cites W3195607459 @default.
- W4383341736 cites W3200722156 @default.
- W4383341736 cites W4226199246 @default.
- W4383341736 cites W4297006222 @default.
- W4383341736 cites W4310687022 @default.
- W4383341736 cites W4320497212 @default.
- W4383341736 cites W4321376625 @default.
- W4383341736 cites W4323869123 @default.
- W4383341736 cites W4327951294 @default.
- W4383341736 cites W4362473394 @default.
- W4383341736 cites W4365451353 @default.
- W4383341736 doi "https://doi.org/10.37391/ijeer.110246" @default.
- W4383341736 hasPublicationYear "2023" @default.
- W4383341736 type Work @default.
- W4383341736 citedByCount "0" @default.
- W4383341736 crossrefType "journal-article" @default.
- W4383341736 hasAuthorship W4383341736A5000626796 @default.
- W4383341736 hasAuthorship W4383341736A5083773857 @default.
- W4383341736 hasBestOaLocation W43833417361 @default.
- W4383341736 hasConcept C115961682 @default.
- W4383341736 hasConcept C121608353 @default.
- W4383341736 hasConcept C126322002 @default.
- W4383341736 hasConcept C138885662 @default.
- W4383341736 hasConcept C148483581 @default.
- W4383341736 hasConcept C153180895 @default.
- W4383341736 hasConcept C154945302 @default.
- W4383341736 hasConcept C19609008 @default.
- W4383341736 hasConcept C2776401178 @default.
- W4383341736 hasConcept C2778220009 @default.
- W4383341736 hasConcept C41008148 @default.
- W4383341736 hasConcept C41895202 @default.
- W4383341736 hasConcept C52622490 @default.
- W4383341736 hasConcept C53533937 @default.
- W4383341736 hasConcept C71924100 @default.
- W4383341736 hasConcept C81669768 @default.
- W4383341736 hasConcept C89600930 @default.
- W4383341736 hasConceptScore W4383341736C115961682 @default.
- W4383341736 hasConceptScore W4383341736C121608353 @default.
- W4383341736 hasConceptScore W4383341736C126322002 @default.
- W4383341736 hasConceptScore W4383341736C138885662 @default.
- W4383341736 hasConceptScore W4383341736C148483581 @default.
- W4383341736 hasConceptScore W4383341736C153180895 @default.
- W4383341736 hasConceptScore W4383341736C154945302 @default.
- W4383341736 hasConceptScore W4383341736C19609008 @default.
- W4383341736 hasConceptScore W4383341736C2776401178 @default.
- W4383341736 hasConceptScore W4383341736C2778220009 @default.
- W4383341736 hasConceptScore W4383341736C41008148 @default.
- W4383341736 hasConceptScore W4383341736C41895202 @default.
- W4383341736 hasConceptScore W4383341736C52622490 @default.
- W4383341736 hasConceptScore W4383341736C53533937 @default.
- W4383341736 hasConceptScore W4383341736C71924100 @default.
- W4383341736 hasConceptScore W4383341736C81669768 @default.
- W4383341736 hasConceptScore W4383341736C89600930 @default.
- W4383341736 hasIssue "2" @default.
- W4383341736 hasLocation W43833417361 @default.
- W4383341736 hasOpenAccess W4383341736 @default.
- W4383341736 hasPrimaryLocation W43833417361 @default.
- W4383341736 hasRelatedWork W1971623867 @default.
- W4383341736 hasRelatedWork W2045615005 @default.
- W4383341736 hasRelatedWork W2052253960 @default.
- W4383341736 hasRelatedWork W2363530787 @default.
- W4383341736 hasRelatedWork W2546942002 @default.
- W4383341736 hasRelatedWork W2550539038 @default.
- W4383341736 hasRelatedWork W2592385986 @default.
- W4383341736 hasRelatedWork W2767563364 @default.
- W4383341736 hasRelatedWork W2345184372 @default.
- W4383341736 hasRelatedWork W3127217315 @default.
- W4383341736 hasVolume "11" @default.
- W4383341736 isParatext "false" @default.
- W4383341736 isRetracted "false" @default.
- W4383341736 workType "article" @default.