Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383344051> ?p ?o ?g. }
- W4383344051 endingPage "26" @default.
- W4383344051 startingPage "1" @default.
- W4383344051 abstract "Regarding the traditional Hot Mix Asphalt (HMA), Warm Mix Asphalt (WMA) with Recycled Concrete Aggregate (RCA) contents (WMA-RCA) requires lower production temperatures and diminishes the consumption of natural aggregates (NAs). Nonetheless, these environmental benefits may be counteracted by the higher optimal asphalt binder demanded by the WMA-RCAs. In this regard, this research develops a computational model to optimize the WMA-RCA design. In order to build a sufficiently accurate and adaptable model, it was decided to employ Artificial Neural Networks (ANNs). The ANN implementation was based on the postulates of the statistical learning theory, i.e., preferring to generate learning through low-complexity models. Also, a representative case study of the northern region of Colombia was assessed. In this scenario, the optimal coarse RCA content was 10%, and the sustainability savings were maintained up to an RCA's hauling distance of 200 km." @default.
- W4383344051 created "2023-07-07" @default.
- W4383344051 creator A5001271652 @default.
- W4383344051 creator A5008104918 @default.
- W4383344051 creator A5035178460 @default.
- W4383344051 creator A5069406786 @default.
- W4383344051 date "2023-07-06" @default.
- W4383344051 modified "2023-10-01" @default.
- W4383344051 title "Neural networks implementation for the environmental optimisation of the recycled concrete aggregate inclusion in warm mix asphalt" @default.
- W4383344051 cites W1520252399 @default.
- W4383344051 cites W165029785 @default.
- W4383344051 cites W1651557770 @default.
- W4383344051 cites W1750164272 @default.
- W4383344051 cites W1905819920 @default.
- W4383344051 cites W1908813088 @default.
- W4383344051 cites W1965011613 @default.
- W4383344051 cites W1966363107 @default.
- W4383344051 cites W1977596813 @default.
- W4383344051 cites W1981265322 @default.
- W4383344051 cites W1996060533 @default.
- W4383344051 cites W1998431925 @default.
- W4383344051 cites W2009569612 @default.
- W4383344051 cites W2010658236 @default.
- W4383344051 cites W2014283952 @default.
- W4383344051 cites W2014566193 @default.
- W4383344051 cites W2017686664 @default.
- W4383344051 cites W2018229787 @default.
- W4383344051 cites W2019461588 @default.
- W4383344051 cites W2032632185 @default.
- W4383344051 cites W2033310064 @default.
- W4383344051 cites W2044091911 @default.
- W4383344051 cites W2048594795 @default.
- W4383344051 cites W2052173765 @default.
- W4383344051 cites W2052739860 @default.
- W4383344051 cites W2053199587 @default.
- W4383344051 cites W2059424981 @default.
- W4383344051 cites W2064645754 @default.
- W4383344051 cites W2068064401 @default.
- W4383344051 cites W2076063813 @default.
- W4383344051 cites W2087312518 @default.
- W4383344051 cites W2092872860 @default.
- W4383344051 cites W2112302724 @default.
- W4383344051 cites W2133637652 @default.
- W4383344051 cites W2138383519 @default.
- W4383344051 cites W2141218268 @default.
- W4383344051 cites W2163922914 @default.
- W4383344051 cites W2296124851 @default.
- W4383344051 cites W2324003227 @default.
- W4383344051 cites W2334955178 @default.
- W4383344051 cites W2536607652 @default.
- W4383344051 cites W2552451861 @default.
- W4383344051 cites W2556345765 @default.
- W4383344051 cites W2565516711 @default.
- W4383344051 cites W2580408768 @default.
- W4383344051 cites W2587345921 @default.
- W4383344051 cites W2595087598 @default.
- W4383344051 cites W2598457882 @default.
- W4383344051 cites W2613648727 @default.
- W4383344051 cites W2724169866 @default.
- W4383344051 cites W2729754547 @default.
- W4383344051 cites W2744087419 @default.
- W4383344051 cites W2753648062 @default.
- W4383344051 cites W2766899523 @default.
- W4383344051 cites W2777473949 @default.
- W4383344051 cites W2788388592 @default.
- W4383344051 cites W2793743806 @default.
- W4383344051 cites W2798878556 @default.
- W4383344051 cites W2803629276 @default.
- W4383344051 cites W2804457539 @default.
- W4383344051 cites W2805681662 @default.
- W4383344051 cites W2883305365 @default.
- W4383344051 cites W2883717273 @default.
- W4383344051 cites W2885704700 @default.
- W4383344051 cites W2888313056 @default.
- W4383344051 cites W2891343223 @default.
- W4383344051 cites W2896140515 @default.
- W4383344051 cites W2904991819 @default.
- W4383344051 cites W2905309063 @default.
- W4383344051 cites W2905502540 @default.
- W4383344051 cites W2911925130 @default.
- W4383344051 cites W2921371629 @default.
- W4383344051 cites W2935507234 @default.
- W4383344051 cites W2969489794 @default.
- W4383344051 cites W2983485905 @default.
- W4383344051 cites W2988290219 @default.
- W4383344051 cites W3003042861 @default.
- W4383344051 cites W3005549444 @default.
- W4383344051 cites W3009531575 @default.
- W4383344051 cites W3012971642 @default.
- W4383344051 cites W3016531414 @default.
- W4383344051 cites W3017120039 @default.
- W4383344051 cites W3027142090 @default.
- W4383344051 cites W3033721478 @default.
- W4383344051 cites W3045664800 @default.
- W4383344051 cites W3047931948 @default.
- W4383344051 cites W3048065666 @default.
- W4383344051 cites W3048128230 @default.
- W4383344051 cites W3085701688 @default.