Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383345785> ?p ?o ?g. }
- W4383345785 endingPage "7891" @default.
- W4383345785 startingPage "7891" @default.
- W4383345785 abstract "Currently, distributed software systems have evolved at an unprecedented pace. Modern software-quality requirements are high and require significant staff support and effort. This study investigates the use of a supervised machine learning model, a Multi-Layer Perceptron (MLP), for anomaly detection in microservices. The study covers the creation of a microservices infrastructure, the development of a fault injection module that simulates application-level and service-level anomalies, the creation of a system monitoring dataset, and the creation and validation of the MLP model to detect anomalies. The results indicate that the MLP model effectively detects anomalies in both domains with higher accuracy, precision, recovery, and F1 score on the service-level anomaly dataset. The potential for more effective distributed system monitoring and management automation is highlighted in this study by focusing on service-level metrics such as service response times. This study provides valuable information about the effectiveness of supervised machine learning models in detecting anomalies across distributed software systems." @default.
- W4383345785 created "2023-07-07" @default.
- W4383345785 creator A5009707287 @default.
- W4383345785 creator A5012200138 @default.
- W4383345785 creator A5045504802 @default.
- W4383345785 date "2023-07-05" @default.
- W4383345785 modified "2023-09-23" @default.
- W4383345785 title "Anomaly Detection in Microservice-Based Systems" @default.
- W4383345785 cites W1975461060 @default.
- W4383345785 cites W1975725126 @default.
- W4383345785 cites W1990867478 @default.
- W4383345785 cites W2023417725 @default.
- W4383345785 cites W2026453187 @default.
- W4383345785 cites W2028604378 @default.
- W4383345785 cites W2050328740 @default.
- W4383345785 cites W2067700786 @default.
- W4383345785 cites W2076063813 @default.
- W4383345785 cites W2102632804 @default.
- W4383345785 cites W2111038504 @default.
- W4383345785 cites W2118418963 @default.
- W4383345785 cites W2323435167 @default.
- W4383345785 cites W2508465325 @default.
- W4383345785 cites W2513041336 @default.
- W4383345785 cites W2528824243 @default.
- W4383345785 cites W2538756378 @default.
- W4383345785 cites W2577261366 @default.
- W4383345785 cites W2613480438 @default.
- W4383345785 cites W2755791218 @default.
- W4383345785 cites W2765511721 @default.
- W4383345785 cites W2767094836 @default.
- W4383345785 cites W2785342844 @default.
- W4383345785 cites W2786743105 @default.
- W4383345785 cites W2792103155 @default.
- W4383345785 cites W2888937476 @default.
- W4383345785 cites W2890976758 @default.
- W4383345785 cites W2891920841 @default.
- W4383345785 cites W2892242081 @default.
- W4383345785 cites W2898998129 @default.
- W4383345785 cites W2900100055 @default.
- W4383345785 cites W2900658014 @default.
- W4383345785 cites W2905936471 @default.
- W4383345785 cites W2913603385 @default.
- W4383345785 cites W2919115771 @default.
- W4383345785 cites W2955169411 @default.
- W4383345785 cites W2964304846 @default.
- W4383345785 cites W2966056803 @default.
- W4383345785 cites W2966971704 @default.
- W4383345785 cites W2989919935 @default.
- W4383345785 cites W3001147583 @default.
- W4383345785 cites W3009134255 @default.
- W4383345785 cites W3024356356 @default.
- W4383345785 cites W3035667192 @default.
- W4383345785 cites W3084013135 @default.
- W4383345785 cites W3096738151 @default.
- W4383345785 cites W3098957257 @default.
- W4383345785 cites W3100178186 @default.
- W4383345785 cites W3107237154 @default.
- W4383345785 cites W3113082031 @default.
- W4383345785 cites W3113508261 @default.
- W4383345785 cites W3172639611 @default.
- W4383345785 cites W3191563648 @default.
- W4383345785 cites W4205686602 @default.
- W4383345785 cites W4206092892 @default.
- W4383345785 cites W4214807529 @default.
- W4383345785 cites W4251569839 @default.
- W4383345785 doi "https://doi.org/10.3390/app13137891" @default.
- W4383345785 hasPublicationYear "2023" @default.
- W4383345785 type Work @default.
- W4383345785 citedByCount "0" @default.
- W4383345785 crossrefType "journal-article" @default.
- W4383345785 hasAuthorship W4383345785A5009707287 @default.
- W4383345785 hasAuthorship W4383345785A5012200138 @default.
- W4383345785 hasAuthorship W4383345785A5045504802 @default.
- W4383345785 hasBestOaLocation W43833457851 @default.
- W4383345785 hasConcept C111919701 @default.
- W4383345785 hasConcept C115903868 @default.
- W4383345785 hasConcept C119857082 @default.
- W4383345785 hasConcept C124101348 @default.
- W4383345785 hasConcept C136264566 @default.
- W4383345785 hasConcept C154945302 @default.
- W4383345785 hasConcept C162324750 @default.
- W4383345785 hasConcept C2777904410 @default.
- W4383345785 hasConcept C2778505942 @default.
- W4383345785 hasConcept C2780378061 @default.
- W4383345785 hasConcept C41008148 @default.
- W4383345785 hasConcept C50644808 @default.
- W4383345785 hasConcept C60908668 @default.
- W4383345785 hasConcept C739882 @default.
- W4383345785 hasConcept C79974875 @default.
- W4383345785 hasConceptScore W4383345785C111919701 @default.
- W4383345785 hasConceptScore W4383345785C115903868 @default.
- W4383345785 hasConceptScore W4383345785C119857082 @default.
- W4383345785 hasConceptScore W4383345785C124101348 @default.
- W4383345785 hasConceptScore W4383345785C136264566 @default.
- W4383345785 hasConceptScore W4383345785C154945302 @default.
- W4383345785 hasConceptScore W4383345785C162324750 @default.
- W4383345785 hasConceptScore W4383345785C2777904410 @default.
- W4383345785 hasConceptScore W4383345785C2778505942 @default.