Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383371007> ?p ?o ?g. }
- W4383371007 endingPage "e42313" @default.
- W4383371007 startingPage "e42313" @default.
- W4383371007 abstract "Background Despite immense progress in artificial intelligence (AI) models, there has been limited deployment in health care environments. The gap between potential and actual AI applications is likely due to the lack of translatability between controlled research environments (where these models are developed) and clinical environments for which the AI tools are ultimately intended. Objective We previously developed the Translational Evaluation of Healthcare AI (TEHAI) framework to assess the translational value of AI models and to support successful transition to health care environments. In this study, we applied the TEHAI framework to the COVID-19 literature in order to assess how well translational topics are covered. Methods A systematic literature search for COVID-19 AI studies published between December 2019 and December 2020 resulted in 3830 records. A subset of 102 (2.7%) papers that passed the inclusion criteria was sampled for full review. The papers were assessed for translational value and descriptive data collected by 9 reviewers (each study was assessed by 2 reviewers). Evaluation scores and extracted data were compared by a third reviewer for resolution of discrepancies. The review process was conducted on the Covidence software platform. Results We observed a significant trend for studies to attain high scores for technical capability but low scores for the areas essential for clinical translatability. Specific questions regarding external model validation, safety, nonmaleficence, and service adoption received failed scores in most studies. Conclusions Using TEHAI, we identified notable gaps in how well translational topics of AI models are covered in the COVID-19 clinical sphere. These gaps in areas crucial for clinical translatability could, and should, be considered already at the model development stage to increase translatability into real COVID-19 health care environments." @default.
- W4383371007 created "2023-07-07" @default.
- W4383371007 creator A5013665161 @default.
- W4383371007 creator A5015364717 @default.
- W4383371007 creator A5018021666 @default.
- W4383371007 creator A5022120357 @default.
- W4383371007 creator A5034214374 @default.
- W4383371007 creator A5037781901 @default.
- W4383371007 creator A5039082630 @default.
- W4383371007 creator A5048258727 @default.
- W4383371007 creator A5056071140 @default.
- W4383371007 creator A5063750580 @default.
- W4383371007 date "2023-07-06" @default.
- W4383371007 modified "2023-10-05" @default.
- W4383371007 title "Application of a Comprehensive Evaluation Framework to COVID-19 Studies: Systematic Review of Translational Aspects of Artificial Intelligence in Health Care" @default.
- W4383371007 cites W2053154970 @default.
- W4383371007 cites W2170021941 @default.
- W4383371007 cites W2749155842 @default.
- W4383371007 cites W2893366129 @default.
- W4383371007 cites W2902461656 @default.
- W4383371007 cites W2915829734 @default.
- W4383371007 cites W2989512989 @default.
- W4383371007 cites W2994958466 @default.
- W4383371007 cites W3032004606 @default.
- W4383371007 cites W3036347230 @default.
- W4383371007 cites W3055801575 @default.
- W4383371007 cites W3091940685 @default.
- W4383371007 cites W3121252309 @default.
- W4383371007 cites W3134020135 @default.
- W4383371007 cites W3134430853 @default.
- W4383371007 cites W3136933888 @default.
- W4383371007 cites W3139338041 @default.
- W4383371007 cites W3153424988 @default.
- W4383371007 cites W3155608852 @default.
- W4383371007 cites W3177253925 @default.
- W4383371007 cites W3184865800 @default.
- W4383371007 cites W3191934798 @default.
- W4383371007 cites W3197667148 @default.
- W4383371007 cites W3207900783 @default.
- W4383371007 cites W4226266016 @default.
- W4383371007 cites W4229036772 @default.
- W4383371007 cites W4281681378 @default.
- W4383371007 doi "https://doi.org/10.2196/42313" @default.
- W4383371007 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37457747" @default.
- W4383371007 hasPublicationYear "2023" @default.
- W4383371007 type Work @default.
- W4383371007 citedByCount "1" @default.
- W4383371007 countsByYear W43833710072023 @default.
- W4383371007 crossrefType "journal-article" @default.
- W4383371007 hasAuthorship W4383371007A5013665161 @default.
- W4383371007 hasAuthorship W4383371007A5015364717 @default.
- W4383371007 hasAuthorship W4383371007A5018021666 @default.
- W4383371007 hasAuthorship W4383371007A5022120357 @default.
- W4383371007 hasAuthorship W4383371007A5034214374 @default.
- W4383371007 hasAuthorship W4383371007A5037781901 @default.
- W4383371007 hasAuthorship W4383371007A5039082630 @default.
- W4383371007 hasAuthorship W4383371007A5048258727 @default.
- W4383371007 hasAuthorship W4383371007A5056071140 @default.
- W4383371007 hasAuthorship W4383371007A5063750580 @default.
- W4383371007 hasBestOaLocation W43833710071 @default.
- W4383371007 hasConcept C105339364 @default.
- W4383371007 hasConcept C111919701 @default.
- W4383371007 hasConcept C115903868 @default.
- W4383371007 hasConcept C128544194 @default.
- W4383371007 hasConcept C142724271 @default.
- W4383371007 hasConcept C154945302 @default.
- W4383371007 hasConcept C160735492 @default.
- W4383371007 hasConcept C162324750 @default.
- W4383371007 hasConcept C17744445 @default.
- W4383371007 hasConcept C189708586 @default.
- W4383371007 hasConcept C199539241 @default.
- W4383371007 hasConcept C2522767166 @default.
- W4383371007 hasConcept C2779134260 @default.
- W4383371007 hasConcept C2779473830 @default.
- W4383371007 hasConcept C3008058167 @default.
- W4383371007 hasConcept C41008148 @default.
- W4383371007 hasConcept C50522688 @default.
- W4383371007 hasConcept C524204448 @default.
- W4383371007 hasConcept C71924100 @default.
- W4383371007 hasConcept C98045186 @default.
- W4383371007 hasConceptScore W4383371007C105339364 @default.
- W4383371007 hasConceptScore W4383371007C111919701 @default.
- W4383371007 hasConceptScore W4383371007C115903868 @default.
- W4383371007 hasConceptScore W4383371007C128544194 @default.
- W4383371007 hasConceptScore W4383371007C142724271 @default.
- W4383371007 hasConceptScore W4383371007C154945302 @default.
- W4383371007 hasConceptScore W4383371007C160735492 @default.
- W4383371007 hasConceptScore W4383371007C162324750 @default.
- W4383371007 hasConceptScore W4383371007C17744445 @default.
- W4383371007 hasConceptScore W4383371007C189708586 @default.
- W4383371007 hasConceptScore W4383371007C199539241 @default.
- W4383371007 hasConceptScore W4383371007C2522767166 @default.
- W4383371007 hasConceptScore W4383371007C2779134260 @default.
- W4383371007 hasConceptScore W4383371007C2779473830 @default.
- W4383371007 hasConceptScore W4383371007C3008058167 @default.
- W4383371007 hasConceptScore W4383371007C41008148 @default.
- W4383371007 hasConceptScore W4383371007C50522688 @default.
- W4383371007 hasConceptScore W4383371007C524204448 @default.