Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383374342> ?p ?o ?g. }
- W4383374342 abstract "Abstract Background Missing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for the first time, the function of the longitudinal regression tree algorithm as a non-parametric method after imputing missing data using SI and MI was investigated using simulated and real data. Method Using different simulation scenarios derived from a real data set, we compared the performance of cross, trajectory mean, interpolation, copy-mean, and MI methods (27 approaches) to impute missing longitudinal data using parametric and non-parametric longitudinal models and the performance of the methods was assessed in real data. The real data included 3,645 participants older than 18 years within six waves obtained from the longitudinal Tehran cardiometabolic genetic study (TCGS). The data modeling was conducted using systolic and diastolic blood pressure (SBP/DBP) as the outcome variables and included predictor variables such as age, gender, and BMI. The efficiency of imputation approaches was compared using mean squared error (MSE), root-mean-squared error (RMSE), median absolute deviation (MAD), deviance, and Akaike information criteria (AIC). Results The longitudinal regression tree algorithm outperformed based on the criteria such as MSE, RMSE, and MAD than the linear mixed-effects model (LMM) for analyzing the TCGS and simulated data using the missing at random (MAR) mechanism. Overall, based on fitting the non-parametric model, the performance of the 27 imputation approaches was nearly similar. However, the SI traj-mean method improved performance compared with other imputation approaches. Conclusion Both SI and MI approaches performed better using the longitudinal regression tree algorithm compared with the parametric longitudinal models. Based on the results from both the real and simulated data, we recommend that researchers use the traj-mean method for imputing missing values of longitudinal data. Choosing the imputation method with the best performance is widely dependent on the models of interest and the data structure." @default.
- W4383374342 created "2023-07-07" @default.
- W4383374342 creator A5021608269 @default.
- W4383374342 creator A5021813860 @default.
- W4383374342 creator A5053548240 @default.
- W4383374342 creator A5054065172 @default.
- W4383374342 creator A5055078587 @default.
- W4383374342 creator A5061192762 @default.
- W4383374342 creator A5069570780 @default.
- W4383374342 creator A5091734774 @default.
- W4383374342 date "2023-07-06" @default.
- W4383374342 modified "2023-10-10" @default.
- W4383374342 title "A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis" @default.
- W4383374342 cites W1485955651 @default.
- W4383374342 cites W1492075988 @default.
- W4383374342 cites W1537066827 @default.
- W4383374342 cites W1781481323 @default.
- W4383374342 cites W1896828031 @default.
- W4383374342 cites W1974806455 @default.
- W4383374342 cites W1985583405 @default.
- W4383374342 cites W2005922164 @default.
- W4383374342 cites W2016603580 @default.
- W4383374342 cites W2019391304 @default.
- W4383374342 cites W2049380844 @default.
- W4383374342 cites W2059180350 @default.
- W4383374342 cites W2065974896 @default.
- W4383374342 cites W2071152788 @default.
- W4383374342 cites W2074840499 @default.
- W4383374342 cites W2076261949 @default.
- W4383374342 cites W2078965693 @default.
- W4383374342 cites W2085020267 @default.
- W4383374342 cites W2085630472 @default.
- W4383374342 cites W2099534828 @default.
- W4383374342 cites W2102252264 @default.
- W4383374342 cites W2108143085 @default.
- W4383374342 cites W2133494987 @default.
- W4383374342 cites W2146514801 @default.
- W4383374342 cites W2154112340 @default.
- W4383374342 cites W2167336343 @default.
- W4383374342 cites W2238421080 @default.
- W4383374342 cites W2238461883 @default.
- W4383374342 cites W2243911249 @default.
- W4383374342 cites W2289932116 @default.
- W4383374342 cites W2337279156 @default.
- W4383374342 cites W2431350489 @default.
- W4383374342 cites W2516447198 @default.
- W4383374342 cites W2607507174 @default.
- W4383374342 cites W2617445378 @default.
- W4383374342 cites W2619339265 @default.
- W4383374342 cites W2736907254 @default.
- W4383374342 cites W2742964921 @default.
- W4383374342 cites W2765717096 @default.
- W4383374342 cites W2792952843 @default.
- W4383374342 cites W2884320626 @default.
- W4383374342 cites W2898258459 @default.
- W4383374342 cites W2904561288 @default.
- W4383374342 cites W2920601579 @default.
- W4383374342 cites W2964045343 @default.
- W4383374342 cites W2977238725 @default.
- W4383374342 cites W3000300768 @default.
- W4383374342 cites W3048951091 @default.
- W4383374342 cites W3094918643 @default.
- W4383374342 cites W3103169725 @default.
- W4383374342 cites W3116114760 @default.
- W4383374342 cites W3128887042 @default.
- W4383374342 cites W3213647809 @default.
- W4383374342 cites W3214099597 @default.
- W4383374342 cites W4251962509 @default.
- W4383374342 cites W4296733573 @default.
- W4383374342 cites W612972800 @default.
- W4383374342 doi "https://doi.org/10.1186/s12874-023-01968-8" @default.
- W4383374342 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37415114" @default.
- W4383374342 hasPublicationYear "2023" @default.
- W4383374342 type Work @default.
- W4383374342 citedByCount "0" @default.
- W4383374342 crossrefType "journal-article" @default.
- W4383374342 hasAuthorship W4383374342A5021608269 @default.
- W4383374342 hasAuthorship W4383374342A5021813860 @default.
- W4383374342 hasAuthorship W4383374342A5053548240 @default.
- W4383374342 hasAuthorship W4383374342A5054065172 @default.
- W4383374342 hasAuthorship W4383374342A5055078587 @default.
- W4383374342 hasAuthorship W4383374342A5061192762 @default.
- W4383374342 hasAuthorship W4383374342A5069570780 @default.
- W4383374342 hasAuthorship W4383374342A5091734774 @default.
- W4383374342 hasBestOaLocation W43833743421 @default.
- W4383374342 hasConcept C105795698 @default.
- W4383374342 hasConcept C117251300 @default.
- W4383374342 hasConcept C119043178 @default.
- W4383374342 hasConcept C126674687 @default.
- W4383374342 hasConcept C139945424 @default.
- W4383374342 hasConcept C22679943 @default.
- W4383374342 hasConcept C33923547 @default.
- W4383374342 hasConcept C41008148 @default.
- W4383374342 hasConcept C58041806 @default.
- W4383374342 hasConcept C9357733 @default.
- W4383374342 hasConceptScore W4383374342C105795698 @default.
- W4383374342 hasConceptScore W4383374342C117251300 @default.
- W4383374342 hasConceptScore W4383374342C119043178 @default.
- W4383374342 hasConceptScore W4383374342C126674687 @default.
- W4383374342 hasConceptScore W4383374342C139945424 @default.