Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383375900> ?p ?o ?g. }
- W4383375900 endingPage "6132" @default.
- W4383375900 startingPage "6116" @default.
- W4383375900 abstract "A data fusion strategy based on hyperspectral imaging (HSI) and electronic nose (e-nose) systems was developed in this study to inspect the postharvest ripening process of Hayward kiwifruit. The extracted features from the e-nose and HSI techniques, in single or combined mode, were used to develop machine learning algorithms. Performance evaluations proved that the fusion of olfactory and reflectance data improves the performance of discriminative and predictive algorithms. Accordingly, with high classification accuracies of 100% and 94.44% in the calibration and test stages, the data fusion-based support vector machine (SVM) outperformed the partial least square discriminant analysis (PLSDA) for discriminating the kiwifruit samples into eight classes based on storage time. Moreover, the data fusion-based support vector regression (SVR) was a better predictor than partial least squares regression (PLSR) for kiwifruit firmness, soluble solids content (SSC), and titratable acidity (TA) measures. The prediction R2 and RMSE criteria of the SVR algorithm on the test data were 0.962 and 0.408 for firmness, 0.964 and 0.337 for SSC, and 0.955 and 0.039 for TA, respectively. It was concluded that the hybrid of e-nose and HSI systems coupled with the SVM algorithm delivers an effective tool for accurate and nondestructive monitoring of kiwifruit quality during storage." @default.
- W4383375900 created "2023-07-07" @default.
- W4383375900 creator A5047066210 @default.
- W4383375900 date "2023-07-06" @default.
- W4383375900 modified "2023-10-17" @default.
- W4383375900 title "A data fusion approach for nondestructive tracking of the ripening process and quality attributes of green Hayward kiwifruit using artificial olfaction and proximal hyperspectral imaging techniques" @default.
- W4383375900 cites W167620302 @default.
- W4383375900 cites W1975579380 @default.
- W4383375900 cites W1997270149 @default.
- W4383375900 cites W1999719339 @default.
- W4383375900 cites W2001134546 @default.
- W4383375900 cites W2018482939 @default.
- W4383375900 cites W2038639656 @default.
- W4383375900 cites W2045588826 @default.
- W4383375900 cites W2050153870 @default.
- W4383375900 cites W2061148654 @default.
- W4383375900 cites W2070075522 @default.
- W4383375900 cites W2077563397 @default.
- W4383375900 cites W2078189913 @default.
- W4383375900 cites W2078702801 @default.
- W4383375900 cites W2085447153 @default.
- W4383375900 cites W2168972502 @default.
- W4383375900 cites W2222739975 @default.
- W4383375900 cites W2294217880 @default.
- W4383375900 cites W2306113704 @default.
- W4383375900 cites W2576795355 @default.
- W4383375900 cites W2590980474 @default.
- W4383375900 cites W2782437439 @default.
- W4383375900 cites W2802864760 @default.
- W4383375900 cites W2803396821 @default.
- W4383375900 cites W2890189655 @default.
- W4383375900 cites W2910416643 @default.
- W4383375900 cites W2937257825 @default.
- W4383375900 cites W2943687951 @default.
- W4383375900 cites W2944345330 @default.
- W4383375900 cites W2953701385 @default.
- W4383375900 cites W2954515902 @default.
- W4383375900 cites W2959171040 @default.
- W4383375900 cites W2963363786 @default.
- W4383375900 cites W2982077770 @default.
- W4383375900 cites W3004292574 @default.
- W4383375900 cites W3009306670 @default.
- W4383375900 cites W3017158015 @default.
- W4383375900 cites W3042923411 @default.
- W4383375900 cites W3082601191 @default.
- W4383375900 cites W3083712094 @default.
- W4383375900 cites W3097556626 @default.
- W4383375900 cites W3109869066 @default.
- W4383375900 cites W3126681825 @default.
- W4383375900 cites W3130508195 @default.
- W4383375900 cites W3139639241 @default.
- W4383375900 cites W3165616171 @default.
- W4383375900 cites W3180397936 @default.
- W4383375900 cites W3186760587 @default.
- W4383375900 cites W3187062710 @default.
- W4383375900 cites W3196670404 @default.
- W4383375900 cites W3197137080 @default.
- W4383375900 cites W3199121738 @default.
- W4383375900 cites W4206400062 @default.
- W4383375900 cites W4210248321 @default.
- W4383375900 cites W4212980854 @default.
- W4383375900 cites W4220905761 @default.
- W4383375900 cites W4224296459 @default.
- W4383375900 cites W4243709838 @default.
- W4383375900 cites W4283331361 @default.
- W4383375900 cites W4293257007 @default.
- W4383375900 cites W4294216983 @default.
- W4383375900 cites W4297823724 @default.
- W4383375900 cites W4298263141 @default.
- W4383375900 cites W4303446272 @default.
- W4383375900 cites W4308030113 @default.
- W4383375900 cites W4311479025 @default.
- W4383375900 cites W4311934161 @default.
- W4383375900 cites W4321198029 @default.
- W4383375900 cites W4321600938 @default.
- W4383375900 cites W2166481910 @default.
- W4383375900 doi "https://doi.org/10.1002/fsn3.3548" @default.
- W4383375900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37823103" @default.
- W4383375900 hasPublicationYear "2023" @default.
- W4383375900 type Work @default.
- W4383375900 citedByCount "0" @default.
- W4383375900 crossrefType "journal-article" @default.
- W4383375900 hasAuthorship W4383375900A5047066210 @default.
- W4383375900 hasBestOaLocation W43833759001 @default.
- W4383375900 hasConcept C119857082 @default.
- W4383375900 hasConcept C12267149 @default.
- W4383375900 hasConcept C153180895 @default.
- W4383375900 hasConcept C154945302 @default.
- W4383375900 hasConcept C159078339 @default.
- W4383375900 hasConcept C185592680 @default.
- W4383375900 hasConcept C189775405 @default.
- W4383375900 hasConcept C22354355 @default.
- W4383375900 hasConcept C23895516 @default.
- W4383375900 hasConcept C31903555 @default.
- W4383375900 hasConcept C33923547 @default.
- W4383375900 hasConcept C33954974 @default.
- W4383375900 hasConcept C41008148 @default.
- W4383375900 hasConcept C69738355 @default.