Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383376752> ?p ?o ?g. }
- W4383376752 endingPage "10609" @default.
- W4383376752 startingPage "10609" @default.
- W4383376752 abstract "Solar irradiation (Rs) is the electromagnetic radiation energy emitted by the Sun. It plays a crucial role in sustaining life on Earth by providing light, heat, and energy. Furthermore, it serves as a key driver of Earth’s climate and weather systems, influencing the distribution of heat across the planet, shaping global air and ocean currents, and determining weather patterns. Variations in Rs levels have significant implications for climate change and long-term climate trends. Moreover, Rs represents an abundant and renewable energy resource, offering a clean and sustainable alternative to fossil fuels. By harnessing solar energy, we can actively reduce greenhouse gas emissions. However, the utilization of Rs comes with its own challenges that must be addressed. One problem is its variability, which makes it difficult to predict and plan for consistent solar energy generation. Its intermittent nature also poses difficulties in meeting continuous energy demand unless appropriate energy storage or backup systems are in place. Integrating large-scale solar energy systems into existing power grids can present technical challenges. Rs levels are influenced by various factors; understanding these factors is crucial for various applications, such as renewable energy planning, climate modeling, and environmental studies. Overcoming the associated challenges requires advancements in technology and innovative solutions. Measuring and harnessing Rs for various applications can be achieved using various devices; however, the expense and scarcity of measuring equipment pose challenges in accurately assessing and monitoring Rs levels. In order to address this, alternative methods have been developed with which to estimate Rs, including artificial intelligence and machine learning (ML) models, like neural networks, kernel algorithms, tree-based models, and ensemble methods. To demonstrate the impact of feature selection methods on Rs predictions, we propose a Multivariate Time Series (MVTS) model using Recursive Feature Elimination (RFE) with a decision tree (DT), Pearson correlation (Pr), logistic regression (LR), Gradient Boosting Models (GBM), and a random forest (RF). Our article introduces a novel framework that integrates various models and incorporates overlooked factors. This framework offers a more comprehensive understanding of Recursive Feature Elimination and its integrations with different models in multivariate solar radiation forecasting. Our research delves into unexplored aspects and challenges existing theories related to solar radiation forecasting. Our results show reliable predictions based on essential criteria. The feature ranking may vary depending on the model used, with the RF Regressor algorithm selecting features such as maximum temperature, minimum temperature, precipitation, wind speed, and relative humidity for specific months. The DT algorithm may yield a slightly different set of selected features. Despite the variations, all of the models exhibit impressive performance, with the LR model demonstrating outstanding performance with low RMSE (0.003) and the highest R2 score (0.002). The other models also show promising results, with RMSE scores ranging from 0.006 to 0.007 and a consistent R2 score of 0.999." @default.
- W4383376752 created "2023-07-07" @default.
- W4383376752 creator A5001300162 @default.
- W4383376752 creator A5020327376 @default.
- W4383376752 creator A5049074713 @default.
- W4383376752 creator A5055417610 @default.
- W4383376752 creator A5074519527 @default.
- W4383376752 date "2023-07-05" @default.
- W4383376752 modified "2023-09-30" @default.
- W4383376752 title "A Novel Machine Learning Approach for Solar Radiation Estimation" @default.
- W4383376752 cites W1179171804 @default.
- W4383376752 cites W1895707564 @default.
- W4383376752 cites W1976511476 @default.
- W4383376752 cites W2008697060 @default.
- W4383376752 cites W2035071946 @default.
- W4383376752 cites W2044451649 @default.
- W4383376752 cites W2046580977 @default.
- W4383376752 cites W2049329129 @default.
- W4383376752 cites W2056192250 @default.
- W4383376752 cites W2081322852 @default.
- W4383376752 cites W2089078082 @default.
- W4383376752 cites W2089487480 @default.
- W4383376752 cites W2093121408 @default.
- W4383376752 cites W2145561180 @default.
- W4383376752 cites W2200314393 @default.
- W4383376752 cites W2338227759 @default.
- W4383376752 cites W2346255329 @default.
- W4383376752 cites W2422976942 @default.
- W4383376752 cites W2569349941 @default.
- W4383376752 cites W2587088850 @default.
- W4383376752 cites W2594027828 @default.
- W4383376752 cites W2598333277 @default.
- W4383376752 cites W2692994384 @default.
- W4383376752 cites W2748859796 @default.
- W4383376752 cites W2766566007 @default.
- W4383376752 cites W2772978762 @default.
- W4383376752 cites W2787894218 @default.
- W4383376752 cites W2792986592 @default.
- W4383376752 cites W2807548466 @default.
- W4383376752 cites W2809183568 @default.
- W4383376752 cites W2889323772 @default.
- W4383376752 cites W2899232271 @default.
- W4383376752 cites W2913211573 @default.
- W4383376752 cites W2914530224 @default.
- W4383376752 cites W2938055116 @default.
- W4383376752 cites W2941821464 @default.
- W4383376752 cites W2941891125 @default.
- W4383376752 cites W2965771385 @default.
- W4383376752 cites W2973472358 @default.
- W4383376752 cites W2984610816 @default.
- W4383376752 cites W2988857877 @default.
- W4383376752 cites W2995623352 @default.
- W4383376752 cites W2995847320 @default.
- W4383376752 cites W3005829171 @default.
- W4383376752 cites W3006515935 @default.
- W4383376752 cites W3016726239 @default.
- W4383376752 cites W3040763429 @default.
- W4383376752 cites W3075674906 @default.
- W4383376752 cites W3129446376 @default.
- W4383376752 cites W3137688634 @default.
- W4383376752 cites W3159574193 @default.
- W4383376752 cites W3194111370 @default.
- W4383376752 cites W3212644427 @default.
- W4383376752 cites W3214509014 @default.
- W4383376752 cites W3217588419 @default.
- W4383376752 cites W4213092342 @default.
- W4383376752 cites W4220764003 @default.
- W4383376752 cites W4224262388 @default.
- W4383376752 cites W4285791904 @default.
- W4383376752 cites W4291109447 @default.
- W4383376752 cites W429766147 @default.
- W4383376752 doi "https://doi.org/10.3390/su151310609" @default.
- W4383376752 hasPublicationYear "2023" @default.
- W4383376752 type Work @default.
- W4383376752 citedByCount "2" @default.
- W4383376752 countsByYear W43833767522023 @default.
- W4383376752 crossrefType "journal-article" @default.
- W4383376752 hasAuthorship W4383376752A5001300162 @default.
- W4383376752 hasAuthorship W4383376752A5020327376 @default.
- W4383376752 hasAuthorship W4383376752A5049074713 @default.
- W4383376752 hasAuthorship W4383376752A5055417610 @default.
- W4383376752 hasAuthorship W4383376752A5074519527 @default.
- W4383376752 hasBestOaLocation W43833767521 @default.
- W4383376752 hasConcept C107826830 @default.
- W4383376752 hasConcept C115343472 @default.
- W4383376752 hasConcept C119599485 @default.
- W4383376752 hasConcept C121332964 @default.
- W4383376752 hasConcept C127413603 @default.
- W4383376752 hasConcept C132651083 @default.
- W4383376752 hasConcept C134560507 @default.
- W4383376752 hasConcept C153294291 @default.
- W4383376752 hasConcept C162324750 @default.
- W4383376752 hasConcept C163258240 @default.
- W4383376752 hasConcept C188573790 @default.
- W4383376752 hasConcept C18903297 @default.
- W4383376752 hasConcept C2777618391 @default.
- W4383376752 hasConcept C2780945871 @default.
- W4383376752 hasConcept C39432304 @default.