Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383377462> ?p ?o ?g. }
- W4383377462 abstract "Abstract Aneuploidy, an abnormal number of chromosomes within a cell, is considered a hallmark of cancer. Patterns of aneuploidy differ across cancers, yet are similar in cancers affecting closely-related tissues. The selection pressures underlying aneuploidy patterns are not fully understood, hindering our understanding of cancer development and progression. Here, we applied interpretable machine learning (ML) methods to study tissue-selective aneuploidy patterns. We defined 20 types of features of normal and cancer tissues, and used them to model gains and losses of chromosome-arms in 24 cancer types. In order to reveal the factors that shape the tissue-specific cancer aneuploidy landscapes, we interpreted the ML models by estimating the relative contribution of each feature to the models. While confirming known drivers of positive selection, our quantitative analysis highlighted the importance of negative selection for shaping the aneuploidy landscapes of human cancer. Tumor-suppressor gene density was a better predictor of gain patterns than oncogene density, and vice-versa for loss patterns. We identified the contribution of tissue-selective features and demonstrated them experimentally for chr13q gain in colon cancer. In line with an important role for negative selection in shaping the aneuploidy landscapes, we found compensation by paralogs to be a top predictor of chromosome-arm loss prevalence, and demonstrated this relationship for one such paralog interaction. Similar factors were found to shape aneuploidy patterns in human cancer cell lines, demonstrating their relevance for aneuploidy research. Overall, our quantitative, interpretable ML models improve the understanding of the genomic properties that shape cancer aneuploidy landscapes." @default.
- W4383377462 created "2023-07-07" @default.
- W4383377462 creator A5012622155 @default.
- W4383377462 creator A5013800434 @default.
- W4383377462 creator A5034875856 @default.
- W4383377462 creator A5059198564 @default.
- W4383377462 creator A5086472114 @default.
- W4383377462 creator A5087233806 @default.
- W4383377462 date "2023-07-05" @default.
- W4383377462 modified "2023-10-16" @default.
- W4383377462 title "Machine-learning analysis of factors that shape cancer aneuploidy landscapes reveals an important role for negative selection" @default.
- W4383377462 cites W1934704664 @default.
- W4383377462 cites W1981409633 @default.
- W4383377462 cites W1987908519 @default.
- W4383377462 cites W1993344012 @default.
- W4383377462 cites W2025093834 @default.
- W4383377462 cites W2101735923 @default.
- W4383377462 cites W2136487516 @default.
- W4383377462 cites W2157852151 @default.
- W4383377462 cites W2302157033 @default.
- W4383377462 cites W2465420247 @default.
- W4383377462 cites W2611387862 @default.
- W4383377462 cites W2737053924 @default.
- W4383377462 cites W2741508285 @default.
- W4383377462 cites W2765284830 @default.
- W4383377462 cites W2789627388 @default.
- W4383377462 cites W2795441313 @default.
- W4383377462 cites W2810986024 @default.
- W4383377462 cites W2886855629 @default.
- W4383377462 cites W2913030342 @default.
- W4383377462 cites W2915168078 @default.
- W4383377462 cites W2949475756 @default.
- W4383377462 cites W2952121859 @default.
- W4383377462 cites W2952156777 @default.
- W4383377462 cites W2954492537 @default.
- W4383377462 cites W2973049920 @default.
- W4383377462 cites W2973350525 @default.
- W4383377462 cites W2999615587 @default.
- W4383377462 cites W3001572379 @default.
- W4383377462 cites W3001814947 @default.
- W4383377462 cites W3008416036 @default.
- W4383377462 cites W3021220024 @default.
- W4383377462 cites W3026159272 @default.
- W4383377462 cites W3028304854 @default.
- W4383377462 cites W3034575867 @default.
- W4383377462 cites W3036962145 @default.
- W4383377462 cites W3102476541 @default.
- W4383377462 cites W3109067025 @default.
- W4383377462 cites W3125673614 @default.
- W4383377462 cites W3133859624 @default.
- W4383377462 cites W3140158048 @default.
- W4383377462 cites W3163530261 @default.
- W4383377462 cites W3164935812 @default.
- W4383377462 cites W3196171893 @default.
- W4383377462 cites W3217729113 @default.
- W4383377462 cites W4200135473 @default.
- W4383377462 cites W4205700885 @default.
- W4383377462 cites W4228996933 @default.
- W4383377462 cites W4255080289 @default.
- W4383377462 cites W4283209859 @default.
- W4383377462 cites W4378349088 @default.
- W4383377462 cites W4380990827 @default.
- W4383377462 cites W4382363287 @default.
- W4383377462 doi "https://doi.org/10.1101/2023.07.05.547626" @default.
- W4383377462 hasPublicationYear "2023" @default.
- W4383377462 type Work @default.
- W4383377462 citedByCount "0" @default.
- W4383377462 crossrefType "posted-content" @default.
- W4383377462 hasAuthorship W4383377462A5012622155 @default.
- W4383377462 hasAuthorship W4383377462A5013800434 @default.
- W4383377462 hasAuthorship W4383377462A5034875856 @default.
- W4383377462 hasAuthorship W4383377462A5059198564 @default.
- W4383377462 hasAuthorship W4383377462A5086472114 @default.
- W4383377462 hasAuthorship W4383377462A5087233806 @default.
- W4383377462 hasBestOaLocation W43833774621 @default.
- W4383377462 hasConcept C104317684 @default.
- W4383377462 hasConcept C121608353 @default.
- W4383377462 hasConcept C127716648 @default.
- W4383377462 hasConcept C140752955 @default.
- W4383377462 hasConcept C143191323 @default.
- W4383377462 hasConcept C2779672484 @default.
- W4383377462 hasConcept C30481170 @default.
- W4383377462 hasConcept C502942594 @default.
- W4383377462 hasConcept C54355233 @default.
- W4383377462 hasConcept C86803240 @default.
- W4383377462 hasConceptScore W4383377462C104317684 @default.
- W4383377462 hasConceptScore W4383377462C121608353 @default.
- W4383377462 hasConceptScore W4383377462C127716648 @default.
- W4383377462 hasConceptScore W4383377462C140752955 @default.
- W4383377462 hasConceptScore W4383377462C143191323 @default.
- W4383377462 hasConceptScore W4383377462C2779672484 @default.
- W4383377462 hasConceptScore W4383377462C30481170 @default.
- W4383377462 hasConceptScore W4383377462C502942594 @default.
- W4383377462 hasConceptScore W4383377462C54355233 @default.
- W4383377462 hasConceptScore W4383377462C86803240 @default.
- W4383377462 hasLocation W43833774621 @default.
- W4383377462 hasOpenAccess W4383377462 @default.
- W4383377462 hasPrimaryLocation W43833774621 @default.
- W4383377462 hasRelatedWork W1488193995 @default.
- W4383377462 hasRelatedWork W1970758615 @default.