Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383377619> ?p ?o ?g. }
- W4383377619 abstract "Introduction Brain atrophy is a critical biomarker of disease progression and treatment response in neurodegenerative diseases such as multiple sclerosis (MS). Confounding factors such as inconsistent imaging acquisitions hamper the accurate measurement of brain atrophy in the clinic. This study aims to develop and validate a robust deep learning model to overcome these challenges; and to evaluate its impact on the measurement of disease progression. Methods Voxel-wise pseudo-atrophy labels were generated using SIENA, a widely adopted tool for the measurement of brain atrophy in MS. Deformation maps were produced for 195 pairs of longitudinal 3D T1 scans from patients with MS. A 3D U-Net, namely DeepBVC, was specifically developed overcome common variances in resolution, signal-to-noise ratio and contrast ratio between baseline and follow up scans. The performance of DeepBVC was compared against SIENA using McLaren test-retest dataset and 233 in-house MS subjects with MRI from multiple time points. Clinical evaluation included disability assessment with the Expanded Disability Status Scale (EDSS) and traditional imaging metrics such as lesion burden. Results For 3 subjects in test-retest experiments, the median percent brain volume change (PBVC) for DeepBVC and SIENA was 0.105 vs. 0.198% (subject 1), 0.061 vs. 0.084% (subject 2), 0.104 vs. 0.408% (subject 3). For testing consistency across multiple time points in individual MS subjects, the mean (± standard deviation) PBVC difference of DeepBVC and SIENA were 0.028% (± 0.145%) and 0.031% (±0.154%), respectively. The linear correlation with baseline T2 lesion volume were r = −0.288 ( p < 0.05) and r = −0.249 ( p < 0.05) for DeepBVC and SIENA, respectively. There was no significant correlation of disability progression with PBVC as estimated by either method ( p = 0.86, p = 0.84). Discussion DeepBVC is a deep learning powered brain volume change estimation method for assessing brain atrophy used T1-weighted images. Compared to SIENA, DeepBVC demonstrates superior performance in reproducibility and in the context of common clinical scan variances such as imaging contrast, voxel resolution, random bias field, and signal-to-noise ratio. Enhanced measurement robustness, automation, and processing speed of DeepBVC indicate its potential for utilisation in both research and clinical environments for monitoring disease progression and, potentially, evaluating treatment effectiveness." @default.
- W4383377619 created "2023-07-07" @default.
- W4383377619 creator A5022686848 @default.
- W4383377619 creator A5028486493 @default.
- W4383377619 creator A5042866937 @default.
- W4383377619 creator A5049566648 @default.
- W4383377619 creator A5062708414 @default.
- W4383377619 creator A5068623236 @default.
- W4383377619 creator A5083946982 @default.
- W4383377619 creator A5086329561 @default.
- W4383377619 date "2023-07-06" @default.
- W4383377619 modified "2023-09-26" @default.
- W4383377619 title "Learning from pseudo-labels: deep networks improve consistency in longitudinal brain volume estimation" @default.
- W4383377619 cites W1558268877 @default.
- W4383377619 cites W1929652082 @default.
- W4383377619 cites W1974104848 @default.
- W4383377619 cites W1974790621 @default.
- W4383377619 cites W1980046788 @default.
- W4383377619 cites W2008758766 @default.
- W4383377619 cites W2010280952 @default.
- W4383377619 cites W2014542253 @default.
- W4383377619 cites W2022852088 @default.
- W4383377619 cites W2026913491 @default.
- W4383377619 cites W2028911404 @default.
- W4383377619 cites W2028942474 @default.
- W4383377619 cites W2034383786 @default.
- W4383377619 cites W2036909473 @default.
- W4383377619 cites W2041796053 @default.
- W4383377619 cites W2071337335 @default.
- W4383377619 cites W2073729256 @default.
- W4383377619 cites W2078524519 @default.
- W4383377619 cites W2106933931 @default.
- W4383377619 cites W2121519829 @default.
- W4383377619 cites W2121742207 @default.
- W4383377619 cites W2123968065 @default.
- W4383377619 cites W2129949989 @default.
- W4383377619 cites W2130686832 @default.
- W4383377619 cites W2132228594 @default.
- W4383377619 cites W2135361930 @default.
- W4383377619 cites W2136573752 @default.
- W4383377619 cites W2139886607 @default.
- W4383377619 cites W2146006502 @default.
- W4383377619 cites W2151041276 @default.
- W4383377619 cites W2151576334 @default.
- W4383377619 cites W2164282396 @default.
- W4383377619 cites W2164832046 @default.
- W4383377619 cites W2171051269 @default.
- W4383377619 cites W2172431827 @default.
- W4383377619 cites W2290321704 @default.
- W4383377619 cites W2321460300 @default.
- W4383377619 cites W2481180990 @default.
- W4383377619 cites W2588421639 @default.
- W4383377619 cites W2667861307 @default.
- W4383377619 cites W2729229022 @default.
- W4383377619 cites W2891602716 @default.
- W4383377619 cites W2894201785 @default.
- W4383377619 cites W2903444831 @default.
- W4383377619 cites W2954996726 @default.
- W4383377619 cites W2961602927 @default.
- W4383377619 cites W2964159205 @default.
- W4383377619 cites W3033878890 @default.
- W4383377619 cites W3038220767 @default.
- W4383377619 cites W3039553495 @default.
- W4383377619 cites W3176923149 @default.
- W4383377619 cites W3204310891 @default.
- W4383377619 cites W3204364267 @default.
- W4383377619 cites W4241074797 @default.
- W4383377619 cites W4289639938 @default.
- W4383377619 cites W4293417715 @default.
- W4383377619 cites W4293580221 @default.
- W4383377619 doi "https://doi.org/10.3389/fnins.2023.1196087" @default.
- W4383377619 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37483345" @default.
- W4383377619 hasPublicationYear "2023" @default.
- W4383377619 type Work @default.
- W4383377619 citedByCount "0" @default.
- W4383377619 crossrefType "journal-article" @default.
- W4383377619 hasAuthorship W4383377619A5022686848 @default.
- W4383377619 hasAuthorship W4383377619A5028486493 @default.
- W4383377619 hasAuthorship W4383377619A5042866937 @default.
- W4383377619 hasAuthorship W4383377619A5049566648 @default.
- W4383377619 hasAuthorship W4383377619A5062708414 @default.
- W4383377619 hasAuthorship W4383377619A5068623236 @default.
- W4383377619 hasAuthorship W4383377619A5083946982 @default.
- W4383377619 hasAuthorship W4383377619A5086329561 @default.
- W4383377619 hasBestOaLocation W43833776191 @default.
- W4383377619 hasConcept C118552586 @default.
- W4383377619 hasConcept C126322002 @default.
- W4383377619 hasConcept C126838900 @default.
- W4383377619 hasConcept C143409427 @default.
- W4383377619 hasConcept C2779717322 @default.
- W4383377619 hasConcept C2780640218 @default.
- W4383377619 hasConcept C2780892749 @default.
- W4383377619 hasConcept C2781172350 @default.
- W4383377619 hasConcept C2989005 @default.
- W4383377619 hasConcept C54170458 @default.
- W4383377619 hasConcept C65835030 @default.
- W4383377619 hasConcept C71924100 @default.
- W4383377619 hasConcept C99508421 @default.
- W4383377619 hasConceptScore W4383377619C118552586 @default.
- W4383377619 hasConceptScore W4383377619C126322002 @default.