Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383469320> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4383469320 abstract "Accurate and fast histological staining is crucial in histopathology, impacting diagnostic precision and reliability. Traditional staining methods are time-consuming and subjective, causing delays in diagnosis. Digital pathology plays a vital role in advancing and optimizing histology processes to improve efficiency and reduce turnaround times. This study introduces a novel deep learning-based framework for virtual histological staining using photon absorption remote sensing (PARS) images. By extracting features from PARS time-resolved signals using a variant of the K-means method, valuable multi-modal information is captured. The proposed multi-channel cycleGAN (MC-GAN) model expands on the traditional cycleGAN framework, allowing the inclusion of additional features. Experimental results reveal that specific combinations of features outperform the conventional channels by improving the labeling of tissue structures prior to model training. Applied to human skin and mouse brain tissue, the results underscore the significance of choosing the optimal combination of features, as it reveals a substantial visual and quantitative concurrence between the virtually stained and the gold standard chemically stained hematoxylin and eosin (H&E) images, surpassing the performance of other feature combinations. Accurate virtual staining is valuable for reliable diagnostic information, aiding pathologists in disease classification, grading, and treatment planning. This study aims to advance label-free histological imaging and opens doors for intraoperative microscopy applications." @default.
- W4383469320 created "2023-07-07" @default.
- W4383469320 creator A5001620837 @default.
- W4383469320 creator A5026565997 @default.
- W4383469320 creator A5047636970 @default.
- W4383469320 creator A5060370343 @default.
- W4383469320 creator A5078015739 @default.
- W4383469320 creator A5084441234 @default.
- W4383469320 date "2023-07-04" @default.
- W4383469320 modified "2023-10-18" @default.
- W4383469320 title "Multi-Channel Feature Extraction for Virtual Histological Staining of Photon Absorption Remote Sensing Images" @default.
- W4383469320 doi "https://doi.org/10.48550/arxiv.2307.01824" @default.
- W4383469320 hasPublicationYear "2023" @default.
- W4383469320 type Work @default.
- W4383469320 citedByCount "1" @default.
- W4383469320 countsByYear W43834693202023 @default.
- W4383469320 crossrefType "posted-content" @default.
- W4383469320 hasAuthorship W4383469320A5001620837 @default.
- W4383469320 hasAuthorship W4383469320A5026565997 @default.
- W4383469320 hasAuthorship W4383469320A5047636970 @default.
- W4383469320 hasAuthorship W4383469320A5060370343 @default.
- W4383469320 hasAuthorship W4383469320A5078015739 @default.
- W4383469320 hasAuthorship W4383469320A5084441234 @default.
- W4383469320 hasBestOaLocation W43834693201 @default.
- W4383469320 hasConcept C125473707 @default.
- W4383469320 hasConcept C126838900 @default.
- W4383469320 hasConcept C127162648 @default.
- W4383469320 hasConcept C136229726 @default.
- W4383469320 hasConcept C138885662 @default.
- W4383469320 hasConcept C142724271 @default.
- W4383469320 hasConcept C153180895 @default.
- W4383469320 hasConcept C154945302 @default.
- W4383469320 hasConcept C160735492 @default.
- W4383469320 hasConcept C162324750 @default.
- W4383469320 hasConcept C2776401178 @default.
- W4383469320 hasConcept C2777522853 @default.
- W4383469320 hasConcept C2779751288 @default.
- W4383469320 hasConcept C2779891985 @default.
- W4383469320 hasConcept C31258907 @default.
- W4383469320 hasConcept C31972630 @default.
- W4383469320 hasConcept C40993552 @default.
- W4383469320 hasConcept C41008148 @default.
- W4383469320 hasConcept C41895202 @default.
- W4383469320 hasConcept C50522688 @default.
- W4383469320 hasConcept C57742111 @default.
- W4383469320 hasConcept C71924100 @default.
- W4383469320 hasConcept C74864618 @default.
- W4383469320 hasConcept C91803115 @default.
- W4383469320 hasConceptScore W4383469320C125473707 @default.
- W4383469320 hasConceptScore W4383469320C126838900 @default.
- W4383469320 hasConceptScore W4383469320C127162648 @default.
- W4383469320 hasConceptScore W4383469320C136229726 @default.
- W4383469320 hasConceptScore W4383469320C138885662 @default.
- W4383469320 hasConceptScore W4383469320C142724271 @default.
- W4383469320 hasConceptScore W4383469320C153180895 @default.
- W4383469320 hasConceptScore W4383469320C154945302 @default.
- W4383469320 hasConceptScore W4383469320C160735492 @default.
- W4383469320 hasConceptScore W4383469320C162324750 @default.
- W4383469320 hasConceptScore W4383469320C2776401178 @default.
- W4383469320 hasConceptScore W4383469320C2777522853 @default.
- W4383469320 hasConceptScore W4383469320C2779751288 @default.
- W4383469320 hasConceptScore W4383469320C2779891985 @default.
- W4383469320 hasConceptScore W4383469320C31258907 @default.
- W4383469320 hasConceptScore W4383469320C31972630 @default.
- W4383469320 hasConceptScore W4383469320C40993552 @default.
- W4383469320 hasConceptScore W4383469320C41008148 @default.
- W4383469320 hasConceptScore W4383469320C41895202 @default.
- W4383469320 hasConceptScore W4383469320C50522688 @default.
- W4383469320 hasConceptScore W4383469320C57742111 @default.
- W4383469320 hasConceptScore W4383469320C71924100 @default.
- W4383469320 hasConceptScore W4383469320C74864618 @default.
- W4383469320 hasConceptScore W4383469320C91803115 @default.
- W4383469320 hasLocation W43834693201 @default.
- W4383469320 hasOpenAccess W4383469320 @default.
- W4383469320 hasPrimaryLocation W43834693201 @default.
- W4383469320 hasRelatedWork W2065857975 @default.
- W4383469320 hasRelatedWork W2085019163 @default.
- W4383469320 hasRelatedWork W2335340708 @default.
- W4383469320 hasRelatedWork W2474593136 @default.
- W4383469320 hasRelatedWork W2883090716 @default.
- W4383469320 hasRelatedWork W4226304838 @default.
- W4383469320 hasRelatedWork W4293113054 @default.
- W4383469320 hasRelatedWork W4295086757 @default.
- W4383469320 hasRelatedWork W4323306893 @default.
- W4383469320 hasRelatedWork W2189275012 @default.
- W4383469320 isParatext "false" @default.
- W4383469320 isRetracted "false" @default.
- W4383469320 workType "article" @default.