Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383497495> ?p ?o ?g. }
- W4383497495 endingPage "1286" @default.
- W4383497495 startingPage "1266" @default.
- W4383497495 abstract "Purpose The goal of this research is to develop a dynamic step path planning algorithm based on the rapidly exploring random tree (RRT) algorithm that combines Q-learning with the Gaussian distribution of obstacles. A route for autonomous vehicles may be swiftly created using this algorithm. Design/methodology/approach The path planning issue is divided into three key steps by the authors. First, the tree expansion is sped up by the dynamic step size using a combination of Q-learning and the Gaussian distribution of obstacles. The invalid nodes are then removed from the initially created pathways using bidirectional pruning. B-splines are then employed to smooth the predicted pathways. Findings The algorithm is validated using simulations on straight and curved highways, respectively. The results show that the approach can provide a smooth, safe route that complies with vehicle motion laws. Originality/value An improved RRT algorithm based on Q-learning and obstacle Gaussian distribution (QGD-RRT) is proposed for the path planning of self-driving vehicles. Unlike previous methods, the authors use Q-learning to steer the tree's development direction. After that, the step size is dynamically altered following the density of the obstacle distribution to produce the initial path rapidly and cut down on planning time even further. In the aim to provide a smooth and secure path that complies with the vehicle kinematic and dynamical restrictions, the path is lastly optimized using an enhanced bidirectional pruning technique." @default.
- W4383497495 created "2023-07-08" @default.
- W4383497495 creator A5021132447 @default.
- W4383497495 creator A5023826377 @default.
- W4383497495 creator A5057883374 @default.
- W4383497495 creator A5064495133 @default.
- W4383497495 creator A5080757739 @default.
- W4383497495 date "2023-07-11" @default.
- W4383497495 modified "2023-10-17" @default.
- W4383497495 title "Research on path planning of autonomous vehicle based on RRT algorithm of Q-learning and obstacle distribution" @default.
- W4383497495 cites W1971086298 @default.
- W4383497495 cites W1997063273 @default.
- W4383497495 cites W2133826865 @default.
- W4383497495 cites W2295092757 @default.
- W4383497495 cites W2625777374 @default.
- W4383497495 cites W2792573551 @default.
- W4383497495 cites W2894639618 @default.
- W4383497495 cites W2899975947 @default.
- W4383497495 cites W2927564896 @default.
- W4383497495 cites W2939018330 @default.
- W4383497495 cites W2950170662 @default.
- W4383497495 cites W2954475015 @default.
- W4383497495 cites W2979355332 @default.
- W4383497495 cites W2985821384 @default.
- W4383497495 cites W3001538587 @default.
- W4383497495 cites W3013007370 @default.
- W4383497495 cites W3037630987 @default.
- W4383497495 cites W3044416008 @default.
- W4383497495 cites W3044527061 @default.
- W4383497495 cites W3080778113 @default.
- W4383497495 cites W3082946196 @default.
- W4383497495 cites W3092929793 @default.
- W4383497495 cites W3114748666 @default.
- W4383497495 cites W3183442651 @default.
- W4383497495 cites W3199732739 @default.
- W4383497495 cites W3204476330 @default.
- W4383497495 cites W3209236165 @default.
- W4383497495 cites W3211310557 @default.
- W4383497495 cites W3211639430 @default.
- W4383497495 cites W4205668268 @default.
- W4383497495 cites W4206617872 @default.
- W4383497495 cites W4223937390 @default.
- W4383497495 cites W4285303526 @default.
- W4383497495 cites W4306835713 @default.
- W4383497495 cites W4313118295 @default.
- W4383497495 doi "https://doi.org/10.1108/ec-11-2022-0672" @default.
- W4383497495 hasPublicationYear "2023" @default.
- W4383497495 type Work @default.
- W4383497495 citedByCount "2" @default.
- W4383497495 countsByYear W43834974952023 @default.
- W4383497495 crossrefType "journal-article" @default.
- W4383497495 hasAuthorship W4383497495A5021132447 @default.
- W4383497495 hasAuthorship W4383497495A5023826377 @default.
- W4383497495 hasAuthorship W4383497495A5057883374 @default.
- W4383497495 hasAuthorship W4383497495A5064495133 @default.
- W4383497495 hasAuthorship W4383497495A5080757739 @default.
- W4383497495 hasConcept C108010975 @default.
- W4383497495 hasConcept C110121322 @default.
- W4383497495 hasConcept C113174947 @default.
- W4383497495 hasConcept C11413529 @default.
- W4383497495 hasConcept C121332964 @default.
- W4383497495 hasConcept C126255220 @default.
- W4383497495 hasConcept C129045301 @default.
- W4383497495 hasConcept C134306372 @default.
- W4383497495 hasConcept C154945302 @default.
- W4383497495 hasConcept C163716315 @default.
- W4383497495 hasConcept C17744445 @default.
- W4383497495 hasConcept C199360897 @default.
- W4383497495 hasConcept C199539241 @default.
- W4383497495 hasConcept C26517878 @default.
- W4383497495 hasConcept C2776650193 @default.
- W4383497495 hasConcept C2776839635 @default.
- W4383497495 hasConcept C2777735758 @default.
- W4383497495 hasConcept C31258907 @default.
- W4383497495 hasConcept C33923547 @default.
- W4383497495 hasConcept C38652104 @default.
- W4383497495 hasConcept C39920418 @default.
- W4383497495 hasConcept C41008148 @default.
- W4383497495 hasConcept C62520636 @default.
- W4383497495 hasConcept C6557445 @default.
- W4383497495 hasConcept C74650414 @default.
- W4383497495 hasConcept C81074085 @default.
- W4383497495 hasConcept C86803240 @default.
- W4383497495 hasConcept C90509273 @default.
- W4383497495 hasConceptScore W4383497495C108010975 @default.
- W4383497495 hasConceptScore W4383497495C110121322 @default.
- W4383497495 hasConceptScore W4383497495C113174947 @default.
- W4383497495 hasConceptScore W4383497495C11413529 @default.
- W4383497495 hasConceptScore W4383497495C121332964 @default.
- W4383497495 hasConceptScore W4383497495C126255220 @default.
- W4383497495 hasConceptScore W4383497495C129045301 @default.
- W4383497495 hasConceptScore W4383497495C134306372 @default.
- W4383497495 hasConceptScore W4383497495C154945302 @default.
- W4383497495 hasConceptScore W4383497495C163716315 @default.
- W4383497495 hasConceptScore W4383497495C17744445 @default.
- W4383497495 hasConceptScore W4383497495C199360897 @default.
- W4383497495 hasConceptScore W4383497495C199539241 @default.
- W4383497495 hasConceptScore W4383497495C26517878 @default.