Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383498041> ?p ?o ?g. }
- W4383498041 endingPage "110964" @default.
- W4383498041 startingPage "110964" @default.
- W4383498041 abstract "The ever-increasing volume of medical imaging data and interest in Big Data research brings challenges to data organization, categorization, and retrieval. Although the radiological value chain is almost entirely digital, data structuring has been widely performed pragmatically, but with insufficient naming and metadata standards for the stringent needs of image analysis. To enable automated data management independent of naming and metadata, this study focused on developing a convolutional neural network (CNN) that classifies medical images based solely on voxel data.A 3D CNN (3D-ResNet18) was trained using a dataset of 31,602 prostate MRI volumes with 10 different sequence types of 1243 patients. A five-fold cross-validation approach with patient-based splits was chosen for training and testing. Training was repeated with a gradual reduction in training data assessing classification accuracies to determine the minimum training data required for sufficient performance. The trained model and developed method were tested on three external datasets.The model achieved an overall accuracy of 99.88 % ± 0.13 % in classifying typical prostate MRI sequence types. When being trained with approximately 10 % of the original cohort (112 patients), the CNN still achieved an accuracy of 97.43 % ± 2.10 %. In external testing the model achieved sensitivities of > 90 % for 10/15 tested sequence types.The herein developed CNN enabled automatic and reliable sequence identification in prostate MRI. Ultimately, such CNN models for voxel-based sequence identification could substantially enhance the management of medical imaging data, improve workflow efficiency and data quality, and allow for robust clinical AI workflows." @default.
- W4383498041 created "2023-07-08" @default.
- W4383498041 creator A5000506964 @default.
- W4383498041 creator A5004328394 @default.
- W4383498041 creator A5006324566 @default.
- W4383498041 creator A5010641207 @default.
- W4383498041 creator A5024953386 @default.
- W4383498041 creator A5025168380 @default.
- W4383498041 creator A5027612434 @default.
- W4383498041 creator A5043671740 @default.
- W4383498041 creator A5050019626 @default.
- W4383498041 creator A5062225416 @default.
- W4383498041 creator A5070058689 @default.
- W4383498041 creator A5080541441 @default.
- W4383498041 date "2023-09-01" @default.
- W4383498041 modified "2023-10-12" @default.
- W4383498041 title "Metadata-independent classification of MRI sequences using convolutional neural networks: Successful application to prostate MRI" @default.
- W4383498041 cites W1490145817 @default.
- W4383498041 cites W2083927153 @default.
- W4383498041 cites W2290321704 @default.
- W4383498041 cites W2320994971 @default.
- W4383498041 cites W2884628886 @default.
- W4383498041 cites W2922071185 @default.
- W4383498041 cites W2968508357 @default.
- W4383498041 cites W2982219350 @default.
- W4383498041 cites W3027874948 @default.
- W4383498041 cites W3121368818 @default.
- W4383498041 cites W3161520686 @default.
- W4383498041 cites W3166065961 @default.
- W4383498041 cites W4283810710 @default.
- W4383498041 cites W4364352662 @default.
- W4383498041 doi "https://doi.org/10.1016/j.ejrad.2023.110964" @default.
- W4383498041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37453274" @default.
- W4383498041 hasPublicationYear "2023" @default.
- W4383498041 type Work @default.
- W4383498041 citedByCount "0" @default.
- W4383498041 crossrefType "journal-article" @default.
- W4383498041 hasAuthorship W4383498041A5000506964 @default.
- W4383498041 hasAuthorship W4383498041A5004328394 @default.
- W4383498041 hasAuthorship W4383498041A5006324566 @default.
- W4383498041 hasAuthorship W4383498041A5010641207 @default.
- W4383498041 hasAuthorship W4383498041A5024953386 @default.
- W4383498041 hasAuthorship W4383498041A5025168380 @default.
- W4383498041 hasAuthorship W4383498041A5027612434 @default.
- W4383498041 hasAuthorship W4383498041A5043671740 @default.
- W4383498041 hasAuthorship W4383498041A5050019626 @default.
- W4383498041 hasAuthorship W4383498041A5062225416 @default.
- W4383498041 hasAuthorship W4383498041A5070058689 @default.
- W4383498041 hasAuthorship W4383498041A5080541441 @default.
- W4383498041 hasBestOaLocation W43834980411 @default.
- W4383498041 hasConcept C106436119 @default.
- W4383498041 hasConcept C111919701 @default.
- W4383498041 hasConcept C115961682 @default.
- W4383498041 hasConcept C124101348 @default.
- W4383498041 hasConcept C142724271 @default.
- W4383498041 hasConcept C153180895 @default.
- W4383498041 hasConcept C154945302 @default.
- W4383498041 hasConcept C177212765 @default.
- W4383498041 hasConcept C19527891 @default.
- W4383498041 hasConcept C2778618615 @default.
- W4383498041 hasConcept C41008148 @default.
- W4383498041 hasConcept C54170458 @default.
- W4383498041 hasConcept C55020928 @default.
- W4383498041 hasConcept C71924100 @default.
- W4383498041 hasConcept C77088390 @default.
- W4383498041 hasConcept C81363708 @default.
- W4383498041 hasConcept C93518851 @default.
- W4383498041 hasConceptScore W4383498041C106436119 @default.
- W4383498041 hasConceptScore W4383498041C111919701 @default.
- W4383498041 hasConceptScore W4383498041C115961682 @default.
- W4383498041 hasConceptScore W4383498041C124101348 @default.
- W4383498041 hasConceptScore W4383498041C142724271 @default.
- W4383498041 hasConceptScore W4383498041C153180895 @default.
- W4383498041 hasConceptScore W4383498041C154945302 @default.
- W4383498041 hasConceptScore W4383498041C177212765 @default.
- W4383498041 hasConceptScore W4383498041C19527891 @default.
- W4383498041 hasConceptScore W4383498041C2778618615 @default.
- W4383498041 hasConceptScore W4383498041C41008148 @default.
- W4383498041 hasConceptScore W4383498041C54170458 @default.
- W4383498041 hasConceptScore W4383498041C55020928 @default.
- W4383498041 hasConceptScore W4383498041C71924100 @default.
- W4383498041 hasConceptScore W4383498041C77088390 @default.
- W4383498041 hasConceptScore W4383498041C81363708 @default.
- W4383498041 hasConceptScore W4383498041C93518851 @default.
- W4383498041 hasFunder F4320321526 @default.
- W4383498041 hasFunder F4320326494 @default.
- W4383498041 hasFunder F4320329666 @default.
- W4383498041 hasLocation W43834980411 @default.
- W4383498041 hasLocation W43834980412 @default.
- W4383498041 hasOpenAccess W4383498041 @default.
- W4383498041 hasPrimaryLocation W43834980411 @default.
- W4383498041 hasRelatedWork W2058118494 @default.
- W4383498041 hasRelatedWork W2095118173 @default.
- W4383498041 hasRelatedWork W2106424170 @default.
- W4383498041 hasRelatedWork W2134629545 @default.
- W4383498041 hasRelatedWork W2382021449 @default.
- W4383498041 hasRelatedWork W2392768766 @default.
- W4383498041 hasRelatedWork W2501188010 @default.