Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383498210> ?p ?o ?g. }
- W4383498210 endingPage "171144" @default.
- W4383498210 startingPage "171144" @default.
- W4383498210 abstract "Haze scenes seriously degrade the performance of computer vision systems. Thus, the single image dehazing based on convolutional neural network (CNN), as an important direction of computer vision, has always attracted extraordinary attentions of researchers and made great progress on dehazing effects. However, there are still some non-trivial issues such as uneven dehazing and color distortion, which are not well addressed. To alleviate these issues, this work proposes a new multiscale feature fusion image dehazing network incorporating a contiguous memory mechanism (MFFDN-CM). Specifically, the pixel attention mechanism, continuous memory strategy and residual dense blocks are jointly integrated into the dehazing model with a prevalent encoder-decoder structure(U-Net). Firstly, our model obtains multiscale feature maps by subsampling operations, and further employs skip connections between the corresponding network layers to connect the feature maps between the encoder and the decoder for good feature fusion. Then, we introduce a continuous memory residual block to strengthen the information flows for feature reuse. Moreover, to leverage detail representation and accomplish adaptive dehazing according to the haze density, MFFDN-CM adopts a pixel attention module on the skip connections to combine the residual dense block module of the corresponding decoding layers. Finally, multiple residual blocks are exploited on the bottleneck in encoder-decoder structure to prevent network performance degradation due to vanishing gradients. Experimental results demonstrate the proposed model can achieve better dehazing performance than the state-of-the-art methods based on other deep neural networks." @default.
- W4383498210 created "2023-07-08" @default.
- W4383498210 creator A5018431194 @default.
- W4383498210 creator A5060014765 @default.
- W4383498210 creator A5069771802 @default.
- W4383498210 creator A5084539432 @default.
- W4383498210 date "2023-09-01" @default.
- W4383498210 modified "2023-10-14" @default.
- W4383498210 title "Multiscale feature fusion deep network for single image dehazing with continuous memory mechanism" @default.
- W4383498210 cites W1536680647 @default.
- W4383498210 cites W1677182931 @default.
- W4383498210 cites W1901129140 @default.
- W4383498210 cites W1923499759 @default.
- W4383498210 cites W2147318913 @default.
- W4383498210 cites W2159005176 @default.
- W4383498210 cites W2194775991 @default.
- W4383498210 cites W2256362396 @default.
- W4383498210 cites W2519481857 @default.
- W4383498210 cites W2534890794 @default.
- W4383498210 cites W2562637781 @default.
- W4383498210 cites W2779176852 @default.
- W4383498210 cites W2798876216 @default.
- W4383498210 cites W2809980286 @default.
- W4383498210 cites W2895176907 @default.
- W4383498210 cites W2962754725 @default.
- W4383498210 cites W2962782447 @default.
- W4383498210 cites W2962793481 @default.
- W4383498210 cites W2963074253 @default.
- W4383498210 cites W2963085671 @default.
- W4383498210 cites W2963152299 @default.
- W4383498210 cites W2963306157 @default.
- W4383498210 cites W2963928582 @default.
- W4383498210 cites W2964101377 @default.
- W4383498210 cites W2970360808 @default.
- W4383498210 cites W2970530557 @default.
- W4383498210 cites W2990007814 @default.
- W4383498210 cites W2995648813 @default.
- W4383498210 cites W3034278302 @default.
- W4383498210 cites W3034331889 @default.
- W4383498210 cites W3034578106 @default.
- W4383498210 cites W3034725788 @default.
- W4383498210 cites W3035601380 @default.
- W4383498210 cites W3045888270 @default.
- W4383498210 cites W3066471605 @default.
- W4383498210 cites W3173269149 @default.
- W4383498210 cites W3176259969 @default.
- W4383498210 cites W3206886340 @default.
- W4383498210 cites W4200367127 @default.
- W4383498210 cites W4205276083 @default.
- W4383498210 cites W4250482878 @default.
- W4383498210 cites W4293166676 @default.
- W4383498210 cites W4312812783 @default.
- W4383498210 doi "https://doi.org/10.1016/j.ijleo.2023.171144" @default.
- W4383498210 hasPublicationYear "2023" @default.
- W4383498210 type Work @default.
- W4383498210 citedByCount "0" @default.
- W4383498210 crossrefType "journal-article" @default.
- W4383498210 hasAuthorship W4383498210A5018431194 @default.
- W4383498210 hasAuthorship W4383498210A5060014765 @default.
- W4383498210 hasAuthorship W4383498210A5069771802 @default.
- W4383498210 hasAuthorship W4383498210A5084539432 @default.
- W4383498210 hasConcept C111919701 @default.
- W4383498210 hasConcept C11413529 @default.
- W4383498210 hasConcept C118505674 @default.
- W4383498210 hasConcept C138885662 @default.
- W4383498210 hasConcept C149635348 @default.
- W4383498210 hasConcept C153180895 @default.
- W4383498210 hasConcept C154945302 @default.
- W4383498210 hasConcept C155512373 @default.
- W4383498210 hasConcept C160633673 @default.
- W4383498210 hasConcept C2524010 @default.
- W4383498210 hasConcept C2776401178 @default.
- W4383498210 hasConcept C2777210771 @default.
- W4383498210 hasConcept C2780513914 @default.
- W4383498210 hasConcept C31972630 @default.
- W4383498210 hasConcept C33923547 @default.
- W4383498210 hasConcept C41008148 @default.
- W4383498210 hasConcept C41895202 @default.
- W4383498210 hasConceptScore W4383498210C111919701 @default.
- W4383498210 hasConceptScore W4383498210C11413529 @default.
- W4383498210 hasConceptScore W4383498210C118505674 @default.
- W4383498210 hasConceptScore W4383498210C138885662 @default.
- W4383498210 hasConceptScore W4383498210C149635348 @default.
- W4383498210 hasConceptScore W4383498210C153180895 @default.
- W4383498210 hasConceptScore W4383498210C154945302 @default.
- W4383498210 hasConceptScore W4383498210C155512373 @default.
- W4383498210 hasConceptScore W4383498210C160633673 @default.
- W4383498210 hasConceptScore W4383498210C2524010 @default.
- W4383498210 hasConceptScore W4383498210C2776401178 @default.
- W4383498210 hasConceptScore W4383498210C2777210771 @default.
- W4383498210 hasConceptScore W4383498210C2780513914 @default.
- W4383498210 hasConceptScore W4383498210C31972630 @default.
- W4383498210 hasConceptScore W4383498210C33923547 @default.
- W4383498210 hasConceptScore W4383498210C41008148 @default.
- W4383498210 hasConceptScore W4383498210C41895202 @default.
- W4383498210 hasFunder F4320317312 @default.
- W4383498210 hasFunder F4320321001 @default.
- W4383498210 hasFunder F4320322665 @default.