Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383498416> ?p ?o ?g. }
- W4383498416 endingPage "045007" @default.
- W4383498416 startingPage "045007" @default.
- W4383498416 abstract "Abstract The use of variational quantum algorithms for optimization tasks has emerged as a crucial application for the current noisy intermediate-scale quantum computers. However, these algorithms face significant difficulties in finding suitable ansatz and appropriate initial parameters. In this paper, we employ meta-learning using recurrent neural networks to address these issues for the recently proposed digitized-counterdiabatic quantum approximate optimization algorithm (QAOA). By combining meta-learning and counterdiabaticity, we find suitable variational parameters and reduce the number of optimization iterations required. We demonstrate the effectiveness of our approach by applying it to the MaxCut problem and the Sherrington–Kirkpatrick model. Our method offers a short-depth circuit ansatz with optimal initial parameters, thus improving the performance of the state-of-the-art QAOA." @default.
- W4383498416 created "2023-07-08" @default.
- W4383498416 creator A5013197239 @default.
- W4383498416 creator A5030869223 @default.
- W4383498416 creator A5050511596 @default.
- W4383498416 creator A5067045769 @default.
- W4383498416 creator A5067941269 @default.
- W4383498416 creator A5079767632 @default.
- W4383498416 date "2023-07-21" @default.
- W4383498416 modified "2023-09-26" @default.
- W4383498416 title "Meta-learning digitized-counterdiabatic quantum optimization" @default.
- W4383498416 cites W1498436455 @default.
- W4383498416 cites W2000449275 @default.
- W4383498416 cites W2017521198 @default.
- W4383498416 cites W2022820481 @default.
- W4383498416 cites W2039122980 @default.
- W4383498416 cites W2046951295 @default.
- W4383498416 cites W2061275375 @default.
- W4383498416 cites W2064675550 @default.
- W4383498416 cites W2065307738 @default.
- W4383498416 cites W2083085524 @default.
- W4383498416 cites W2122772951 @default.
- W4383498416 cites W2127962507 @default.
- W4383498416 cites W2161685427 @default.
- W4383498416 cites W2254754114 @default.
- W4383498416 cites W2401610261 @default.
- W4383498416 cites W2488616581 @default.
- W4383498416 cites W2544944598 @default.
- W4383498416 cites W2559394418 @default.
- W4383498416 cites W2753618180 @default.
- W4383498416 cites W2754868542 @default.
- W4383498416 cites W2794444783 @default.
- W4383498416 cites W2803434569 @default.
- W4383498416 cites W2888720512 @default.
- W4383498416 cites W2903221501 @default.
- W4383498416 cites W2911439191 @default.
- W4383498416 cites W2922395823 @default.
- W4383498416 cites W2927879382 @default.
- W4383498416 cites W2937049145 @default.
- W4383498416 cites W2941137921 @default.
- W4383498416 cites W2951211905 @default.
- W4383498416 cites W2953050164 @default.
- W4383498416 cites W2961408814 @default.
- W4383498416 cites W2963610279 @default.
- W4383498416 cites W2964199361 @default.
- W4383498416 cites W2998508934 @default.
- W4383498416 cites W3019601122 @default.
- W4383498416 cites W3026387229 @default.
- W4383498416 cites W3030187663 @default.
- W4383498416 cites W3088409280 @default.
- W4383498416 cites W3092321087 @default.
- W4383498416 cites W3098727676 @default.
- W4383498416 cites W3100894865 @default.
- W4383498416 cites W3101044933 @default.
- W4383498416 cites W3101119258 @default.
- W4383498416 cites W3104022488 @default.
- W4383498416 cites W3104962094 @default.
- W4383498416 cites W3106061236 @default.
- W4383498416 cites W3112014248 @default.
- W4383498416 cites W3118800713 @default.
- W4383498416 cites W3119538242 @default.
- W4383498416 cites W3123172598 @default.
- W4383498416 cites W3125151925 @default.
- W4383498416 cites W3133483384 @default.
- W4383498416 cites W3139223064 @default.
- W4383498416 cites W3176131052 @default.
- W4383498416 cites W3182139769 @default.
- W4383498416 cites W3211167621 @default.
- W4383498416 cites W3217310429 @default.
- W4383498416 cites W4213212652 @default.
- W4383498416 cites W4307468269 @default.
- W4383498416 cites W4308367664 @default.
- W4383498416 cites W4309192429 @default.
- W4383498416 cites W4310854203 @default.
- W4383498416 cites W4313410848 @default.
- W4383498416 doi "https://doi.org/10.1088/2058-9565/ace54a" @default.
- W4383498416 hasPublicationYear "2023" @default.
- W4383498416 type Work @default.
- W4383498416 citedByCount "0" @default.
- W4383498416 crossrefType "journal-article" @default.
- W4383498416 hasAuthorship W4383498416A5013197239 @default.
- W4383498416 hasAuthorship W4383498416A5030869223 @default.
- W4383498416 hasAuthorship W4383498416A5050511596 @default.
- W4383498416 hasAuthorship W4383498416A5067045769 @default.
- W4383498416 hasAuthorship W4383498416A5067941269 @default.
- W4383498416 hasAuthorship W4383498416A5079767632 @default.
- W4383498416 hasBestOaLocation W43834984162 @default.
- W4383498416 hasConcept C11413529 @default.
- W4383498416 hasConcept C121332964 @default.
- W4383498416 hasConcept C126255220 @default.
- W4383498416 hasConcept C130979935 @default.
- W4383498416 hasConcept C137836250 @default.
- W4383498416 hasConcept C144024400 @default.
- W4383498416 hasConcept C154945302 @default.
- W4383498416 hasConcept C2778755073 @default.
- W4383498416 hasConcept C2779304628 @default.
- W4383498416 hasConcept C33923547 @default.
- W4383498416 hasConcept C36289849 @default.