Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383499438> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4383499438 abstract "Abstract The present study proposes a novel technique for the early prediction of diabetes with the utmost accuracy. Recently, the contemporary methodologies of artificial intelligence and in particular Deep Learning (DL), have proven to be expeditious in the diagnosis of diabetes. The model that is supported has been constructed with the implementation of two hidden layers and a multitude of epochs of Deep Learning Neural Network (DLNN) utilizing the Multi-Layer Perceptron (MLP) technique. We proceeded to meticulously adjust the hyperparameters within the fully automated DLNN architecture, with the aim of optimizing data pre-processing, classification and prediction. This was accomplished by a novel dataset of Mansoura University Children's Hospital Diabetes (MUCHD), which allowed for a more comprehensive evaluation of the system’s performance. The system is validated and tested on a sample of 548 patients, each exhibiting 18 significant features. Various validation metrics were employed to ensure the accuracy and reliability of the results like K-folds, leave-one-subject-out and cross-validation approaches with various statistical measures of accuracy, f-score, precision, sensitivity, specificity and dice similarity coefficient. The high-performance level of the proposed system can help clinicians to accurately diagnose health and different diabetes grades with a remarkable accuracy rate of 99.8%. According to our analysis, the implementation of this method results in a noteworthy increase of 4.15% in overall system performance when compared to the current state-of-the-art. As such, we highly recommend the utilization of this method as a promising tool for forecasting diabetes." @default.
- W4383499438 created "2023-07-08" @default.
- W4383499438 creator A5042916753 @default.
- W4383499438 creator A5092420351 @default.
- W4383499438 date "2023-07-07" @default.
- W4383499438 modified "2023-09-23" @default.
- W4383499438 title "Pediatric Diabetes Prediction Using Deep Learning" @default.
- W4383499438 cites W2121024188 @default.
- W4383499438 cites W2379581788 @default.
- W4383499438 cites W2807027008 @default.
- W4383499438 cites W2899963038 @default.
- W4383499438 cites W2900374423 @default.
- W4383499438 cites W2922073769 @default.
- W4383499438 cites W2937002248 @default.
- W4383499438 cites W2985328577 @default.
- W4383499438 cites W3001110895 @default.
- W4383499438 cites W3042679019 @default.
- W4383499438 cites W3106920072 @default.
- W4383499438 cites W3120580064 @default.
- W4383499438 cites W3130398204 @default.
- W4383499438 cites W3130449168 @default.
- W4383499438 cites W4200136078 @default.
- W4383499438 cites W4200353185 @default.
- W4383499438 cites W4200626017 @default.
- W4383499438 cites W4254965081 @default.
- W4383499438 cites W4313194377 @default.
- W4383499438 cites W4320884090 @default.
- W4383499438 doi "https://doi.org/10.21203/rs.3.rs-3146306/v1" @default.
- W4383499438 hasPublicationYear "2023" @default.
- W4383499438 type Work @default.
- W4383499438 citedByCount "0" @default.
- W4383499438 crossrefType "posted-content" @default.
- W4383499438 hasAuthorship W4383499438A5042916753 @default.
- W4383499438 hasAuthorship W4383499438A5092420351 @default.
- W4383499438 hasBestOaLocation W43834994381 @default.
- W4383499438 hasConcept C108583219 @default.
- W4383499438 hasConcept C119857082 @default.
- W4383499438 hasConcept C121332964 @default.
- W4383499438 hasConcept C124101348 @default.
- W4383499438 hasConcept C154945302 @default.
- W4383499438 hasConcept C163258240 @default.
- W4383499438 hasConcept C179717631 @default.
- W4383499438 hasConcept C185592680 @default.
- W4383499438 hasConcept C198531522 @default.
- W4383499438 hasConcept C41008148 @default.
- W4383499438 hasConcept C43214815 @default.
- W4383499438 hasConcept C43617362 @default.
- W4383499438 hasConcept C50644808 @default.
- W4383499438 hasConcept C60908668 @default.
- W4383499438 hasConcept C62520636 @default.
- W4383499438 hasConcept C8642999 @default.
- W4383499438 hasConceptScore W4383499438C108583219 @default.
- W4383499438 hasConceptScore W4383499438C119857082 @default.
- W4383499438 hasConceptScore W4383499438C121332964 @default.
- W4383499438 hasConceptScore W4383499438C124101348 @default.
- W4383499438 hasConceptScore W4383499438C154945302 @default.
- W4383499438 hasConceptScore W4383499438C163258240 @default.
- W4383499438 hasConceptScore W4383499438C179717631 @default.
- W4383499438 hasConceptScore W4383499438C185592680 @default.
- W4383499438 hasConceptScore W4383499438C198531522 @default.
- W4383499438 hasConceptScore W4383499438C41008148 @default.
- W4383499438 hasConceptScore W4383499438C43214815 @default.
- W4383499438 hasConceptScore W4383499438C43617362 @default.
- W4383499438 hasConceptScore W4383499438C50644808 @default.
- W4383499438 hasConceptScore W4383499438C60908668 @default.
- W4383499438 hasConceptScore W4383499438C62520636 @default.
- W4383499438 hasConceptScore W4383499438C8642999 @default.
- W4383499438 hasLocation W43834994381 @default.
- W4383499438 hasOpenAccess W4383499438 @default.
- W4383499438 hasPrimaryLocation W43834994381 @default.
- W4383499438 hasRelatedWork W1501213224 @default.
- W4383499438 hasRelatedWork W3185179407 @default.
- W4383499438 hasRelatedWork W3211546796 @default.
- W4383499438 hasRelatedWork W4210299761 @default.
- W4383499438 hasRelatedWork W4231994957 @default.
- W4383499438 hasRelatedWork W4281616679 @default.
- W4383499438 hasRelatedWork W4282977429 @default.
- W4383499438 hasRelatedWork W4285741730 @default.
- W4383499438 hasRelatedWork W4322750901 @default.
- W4383499438 hasRelatedWork W4381616756 @default.
- W4383499438 isParatext "false" @default.
- W4383499438 isRetracted "false" @default.
- W4383499438 workType "article" @default.