Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383500208> ?p ?o ?g. }
- W4383500208 endingPage "13" @default.
- W4383500208 startingPage "1" @default.
- W4383500208 abstract "The objective of this work was to predict the risk of mortality rate in patients with coronary artery bypass grafting (CABG) based on the risk prediction model of CABG using artificial intelligence (AI) and big data technologies. The clinical data of 2,364 patients undergoing CABG in our hospital from January 2019 to August 2021 were collected in this work. Based on AI and big data technology, business requirement analysis, system requirement analysis, complication prediction module, big data mining technology, and model building are carried out, respectively; the successful CABG risk prediction system includes case feature analysis service, risk warning service, and case retrieval service. The commonly used precision, recall, and F1-score were adopted to evaluate the quality of the gradient-boosted tree (GBT) model. The analysis proved that the GBT model was the best in terms of precision, F1-score, and area under the receiver operating characteristic curve (ROC). According to the CABG risk prediction model, 1,382 patients had a score of <0, 463 patients had a score of 0 ≤ score ≤ 2, 252 patients had a score of 2 < score ≤ 5, and 267 patients had a score of >5, which were stratified into four groups: A, B, C, and D. The actual number of in-hospital deaths was 25, and the in-hospital mortality rate was 1.05%. The mortality rate predicted by the CABG risk prediction model was 2.67 ± 1.82% (95% confidential interval (CI) (2.87-2.98)), which was higher than the actual value. The CABG risk prediction model showed the credible results only in group B with AUC = 0.763 > 0.7. In group B, 3 patients actually died, the actual mortality rate was 0.33%, and the predicted mortality rate was 0.96 ± 0.78 (95% CI (0.82-0.87)), which overestimated the mortality rate of patients in group B. It successfully constructed a CABG risk prediction model based on the AI and big data technologies, which would overestimate the mortality of patients with intermediate risk, and it is suitable for different types of heart diseases through continuous research and development and innovation, and provides clinical guidance value." @default.
- W4383500208 created "2023-07-08" @default.
- W4383500208 creator A5000179307 @default.
- W4383500208 creator A5007957743 @default.
- W4383500208 creator A5044070209 @default.
- W4383500208 creator A5045822240 @default.
- W4383500208 creator A5058463238 @default.
- W4383500208 creator A5071332980 @default.
- W4383500208 creator A5080733133 @default.
- W4383500208 date "2023-07-07" @default.
- W4383500208 modified "2023-09-30" @default.
- W4383500208 title "Artificial Intelligence and Big Data Technologies in the Construction of Surgical Risk Prediction Model for Patients with Coronary Artery Bypass Grafting" @default.
- W4383500208 cites W2529283716 @default.
- W4383500208 cites W2623505678 @default.
- W4383500208 cites W2793637726 @default.
- W4383500208 cites W2796421467 @default.
- W4383500208 cites W2891406929 @default.
- W4383500208 cites W2903045393 @default.
- W4383500208 cites W2904007742 @default.
- W4383500208 cites W2936464280 @default.
- W4383500208 cites W2945803548 @default.
- W4383500208 cites W2966218717 @default.
- W4383500208 cites W2973416590 @default.
- W4383500208 cites W2981146570 @default.
- W4383500208 cites W2995107788 @default.
- W4383500208 cites W2999185604 @default.
- W4383500208 cites W3012687466 @default.
- W4383500208 cites W3024983160 @default.
- W4383500208 cites W3035123737 @default.
- W4383500208 cites W3040996552 @default.
- W4383500208 cites W3080184824 @default.
- W4383500208 cites W3083699966 @default.
- W4383500208 cites W3097508652 @default.
- W4383500208 cites W3108374196 @default.
- W4383500208 cites W3113333776 @default.
- W4383500208 cites W3139245848 @default.
- W4383500208 cites W3144187525 @default.
- W4383500208 cites W3158981956 @default.
- W4383500208 cites W3173203385 @default.
- W4383500208 cites W3174030102 @default.
- W4383500208 cites W3179313504 @default.
- W4383500208 cites W3197547179 @default.
- W4383500208 cites W3211595546 @default.
- W4383500208 cites W4226139406 @default.
- W4383500208 doi "https://doi.org/10.1155/2023/9575553" @default.
- W4383500208 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37455771" @default.
- W4383500208 hasPublicationYear "2023" @default.
- W4383500208 type Work @default.
- W4383500208 citedByCount "0" @default.
- W4383500208 crossrefType "journal-article" @default.
- W4383500208 hasAuthorship W4383500208A5000179307 @default.
- W4383500208 hasAuthorship W4383500208A5007957743 @default.
- W4383500208 hasAuthorship W4383500208A5044070209 @default.
- W4383500208 hasAuthorship W4383500208A5045822240 @default.
- W4383500208 hasAuthorship W4383500208A5058463238 @default.
- W4383500208 hasAuthorship W4383500208A5071332980 @default.
- W4383500208 hasAuthorship W4383500208A5080733133 @default.
- W4383500208 hasBestOaLocation W43835002081 @default.
- W4383500208 hasConcept C11783203 @default.
- W4383500208 hasConcept C119857082 @default.
- W4383500208 hasConcept C124101348 @default.
- W4383500208 hasConcept C126322002 @default.
- W4383500208 hasConcept C154945302 @default.
- W4383500208 hasConcept C164705383 @default.
- W4383500208 hasConcept C179755657 @default.
- W4383500208 hasConcept C2776820930 @default.
- W4383500208 hasConcept C2779134260 @default.
- W4383500208 hasConcept C3017915907 @default.
- W4383500208 hasConcept C41008148 @default.
- W4383500208 hasConcept C45804977 @default.
- W4383500208 hasConcept C58471807 @default.
- W4383500208 hasConcept C71924100 @default.
- W4383500208 hasConcept C75684735 @default.
- W4383500208 hasConcept C84525736 @default.
- W4383500208 hasConceptScore W4383500208C11783203 @default.
- W4383500208 hasConceptScore W4383500208C119857082 @default.
- W4383500208 hasConceptScore W4383500208C124101348 @default.
- W4383500208 hasConceptScore W4383500208C126322002 @default.
- W4383500208 hasConceptScore W4383500208C154945302 @default.
- W4383500208 hasConceptScore W4383500208C164705383 @default.
- W4383500208 hasConceptScore W4383500208C179755657 @default.
- W4383500208 hasConceptScore W4383500208C2776820930 @default.
- W4383500208 hasConceptScore W4383500208C2779134260 @default.
- W4383500208 hasConceptScore W4383500208C3017915907 @default.
- W4383500208 hasConceptScore W4383500208C41008148 @default.
- W4383500208 hasConceptScore W4383500208C45804977 @default.
- W4383500208 hasConceptScore W4383500208C58471807 @default.
- W4383500208 hasConceptScore W4383500208C71924100 @default.
- W4383500208 hasConceptScore W4383500208C75684735 @default.
- W4383500208 hasConceptScore W4383500208C84525736 @default.
- W4383500208 hasFunder F4320324176 @default.
- W4383500208 hasLocation W43835002081 @default.
- W4383500208 hasLocation W43835002082 @default.
- W4383500208 hasOpenAccess W4383500208 @default.
- W4383500208 hasPrimaryLocation W43835002081 @default.
- W4383500208 hasRelatedWork W1580905093 @default.
- W4383500208 hasRelatedWork W1836553849 @default.
- W4383500208 hasRelatedWork W2001708017 @default.