Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383500908> ?p ?o ?g. }
- W4383500908 endingPage "108501" @default.
- W4383500908 startingPage "108501" @default.
- W4383500908 abstract "We propose a methodology used to estimate the performance of hypersonic engines by coupling some machine learning methods with a generated CFD database and one-dimensional expansion equations. The present work also investigates the effects of fuel struts geometrical parameters on the supersonic combustion which takes place in a dual-mode ramjet/scramjet engine operating at stratospheric flight conditions with a cruise speed of Mach 8. We solved 2D compressible RANS flow equations coupled with the β-pdf method using Ansys Fluent commercial code, and built a CFD database with varying three design parameters which are strut V-settlement angle, strut location, and wedge angle. The numerical code was verified/validated using the data obtained in the DLR scramjet combustor. Three main objective functions in the combustor (combustion efficiency along 14 stations having 10 cm interval between each other, averaged flow variables at exit of combustor, and total pressure recovery factor in the combustor) were selected to evaluate the struts configuration parameters effects on supersonic combustion flow physics and engine performance. These objective functions, i.e. dependent variables were regressed with independent design parameters by three machine learning techniques which are Kernel regression, Gaussian process regression, and Artificial neural network. The machine learning models of the flow variables at the combustor throat provided initial conditions for a given fuel strut configuration to the expansion solutions for the nozzle component in order to calculate the engine performance. The Artificial neural network was found the most successful technique in overall regression of the objective functions. We also discovered that the most significant design variable is the strut wedge angle for all investigated phenomena in the supersonic reactive flow field." @default.
- W4383500908 created "2023-07-08" @default.
- W4383500908 creator A5040088227 @default.
- W4383500908 creator A5063144010 @default.
- W4383500908 creator A5078499482 @default.
- W4383500908 creator A5085238340 @default.
- W4383500908 date "2023-09-01" @default.
- W4383500908 modified "2023-10-14" @default.
- W4383500908 title "A methodology for estimating hypersonic engine performance by coupling supersonic reactive flow simulations with machine learning techniques" @default.
- W4383500908 cites W1596672246 @default.
- W4383500908 cites W1973462383 @default.
- W4383500908 cites W1980837018 @default.
- W4383500908 cites W1981289669 @default.
- W4383500908 cites W1999412361 @default.
- W4383500908 cites W2020484606 @default.
- W4383500908 cites W2049604023 @default.
- W4383500908 cites W2053933494 @default.
- W4383500908 cites W2057038280 @default.
- W4383500908 cites W2059695882 @default.
- W4383500908 cites W2064748765 @default.
- W4383500908 cites W2068331296 @default.
- W4383500908 cites W2069887830 @default.
- W4383500908 cites W2086734070 @default.
- W4383500908 cites W2123446858 @default.
- W4383500908 cites W2137983211 @default.
- W4383500908 cites W2166751342 @default.
- W4383500908 cites W2262183875 @default.
- W4383500908 cites W2319505626 @default.
- W4383500908 cites W2344476636 @default.
- W4383500908 cites W2375825737 @default.
- W4383500908 cites W2408751301 @default.
- W4383500908 cites W2527753504 @default.
- W4383500908 cites W2781629766 @default.
- W4383500908 cites W2810020585 @default.
- W4383500908 cites W2889727408 @default.
- W4383500908 cites W2896652967 @default.
- W4383500908 cites W2911703110 @default.
- W4383500908 cites W2912034759 @default.
- W4383500908 cites W2942446037 @default.
- W4383500908 cites W2949010794 @default.
- W4383500908 cites W3000356320 @default.
- W4383500908 cites W3023575922 @default.
- W4383500908 cites W3034495304 @default.
- W4383500908 cites W3036785040 @default.
- W4383500908 cites W3044372799 @default.
- W4383500908 cites W3081583436 @default.
- W4383500908 cites W3107758309 @default.
- W4383500908 cites W3128809231 @default.
- W4383500908 cites W3135143354 @default.
- W4383500908 cites W3184993334 @default.
- W4383500908 cites W3196729144 @default.
- W4383500908 cites W4221001148 @default.
- W4383500908 cites W4240443022 @default.
- W4383500908 cites W4293037624 @default.
- W4383500908 cites W4304083985 @default.
- W4383500908 doi "https://doi.org/10.1016/j.ast.2023.108501" @default.
- W4383500908 hasPublicationYear "2023" @default.
- W4383500908 type Work @default.
- W4383500908 citedByCount "0" @default.
- W4383500908 crossrefType "journal-article" @default.
- W4383500908 hasAuthorship W4383500908A5040088227 @default.
- W4383500908 hasAuthorship W4383500908A5063144010 @default.
- W4383500908 hasAuthorship W4383500908A5078499482 @default.
- W4383500908 hasAuthorship W4383500908A5085238340 @default.
- W4383500908 hasConcept C105923489 @default.
- W4383500908 hasConcept C116575374 @default.
- W4383500908 hasConcept C119857082 @default.
- W4383500908 hasConcept C122824865 @default.
- W4383500908 hasConcept C127413603 @default.
- W4383500908 hasConcept C146978453 @default.
- W4383500908 hasConcept C1633027 @default.
- W4383500908 hasConcept C165231844 @default.
- W4383500908 hasConcept C178790620 @default.
- W4383500908 hasConcept C185592680 @default.
- W4383500908 hasConcept C205991772 @default.
- W4383500908 hasConcept C2779421825 @default.
- W4383500908 hasConcept C41008148 @default.
- W4383500908 hasConcept C56278489 @default.
- W4383500908 hasConcept C78519656 @default.
- W4383500908 hasConcept C81692654 @default.
- W4383500908 hasConcept C83104080 @default.
- W4383500908 hasConceptScore W4383500908C105923489 @default.
- W4383500908 hasConceptScore W4383500908C116575374 @default.
- W4383500908 hasConceptScore W4383500908C119857082 @default.
- W4383500908 hasConceptScore W4383500908C122824865 @default.
- W4383500908 hasConceptScore W4383500908C127413603 @default.
- W4383500908 hasConceptScore W4383500908C146978453 @default.
- W4383500908 hasConceptScore W4383500908C1633027 @default.
- W4383500908 hasConceptScore W4383500908C165231844 @default.
- W4383500908 hasConceptScore W4383500908C178790620 @default.
- W4383500908 hasConceptScore W4383500908C185592680 @default.
- W4383500908 hasConceptScore W4383500908C205991772 @default.
- W4383500908 hasConceptScore W4383500908C2779421825 @default.
- W4383500908 hasConceptScore W4383500908C41008148 @default.
- W4383500908 hasConceptScore W4383500908C56278489 @default.
- W4383500908 hasConceptScore W4383500908C78519656 @default.
- W4383500908 hasConceptScore W4383500908C81692654 @default.
- W4383500908 hasConceptScore W4383500908C83104080 @default.