Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383501468> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4383501468 abstract "Depression affects people globally and requires early treatment. If a depressed individual isn’t given proper attention it leads to complications. Complications can be avoided by detecting depression earlier. To address this, Information from social media platforms and wearable technology can offer useful insights into a person’s behavior and mental condition. ML algorithms are efficient for people with depression. The study aims to compare the performance of three algorithms— Logistic Regression, Multinomial Naive Bayes and Support Vector Machine are the methods to detect depression. Any machine learning model’s accuracy is highly dependent on the quality of the training data. Collecting trustworthy and representative data may be difficult when attempting to forecast depression. The models’ performance may be impacted by the data’s potential for being incomplete, erroneous, or biased. A variety of measures, such as precision, recall analysis and F1-score comparison, will be utilized in order to evaluate the effectiveness of the algorithms. By training these models on a similar dataset and comparing them based on accuracy and other criteria like sensitivity rates, it can determine which algorithm performs better at predicting depression. The SVM tends to be more effective compared to other two algorithms." @default.
- W4383501468 created "2023-07-08" @default.
- W4383501468 creator A5002350649 @default.
- W4383501468 creator A5039855401 @default.
- W4383501468 creator A5085534314 @default.
- W4383501468 creator A5092420843 @default.
- W4383501468 date "2023-06-14" @default.
- W4383501468 modified "2023-09-26" @default.
- W4383501468 title "Comparative Analysis of Different Machine Learning Algorithms to Predict Depression" @default.
- W4383501468 cites W2251383488 @default.
- W4383501468 cites W2405042511 @default.
- W4383501468 cites W2897583329 @default.
- W4383501468 doi "https://doi.org/10.1109/icscss57650.2023.10169826" @default.
- W4383501468 hasPublicationYear "2023" @default.
- W4383501468 type Work @default.
- W4383501468 citedByCount "0" @default.
- W4383501468 crossrefType "proceedings-article" @default.
- W4383501468 hasAuthorship W4383501468A5002350649 @default.
- W4383501468 hasAuthorship W4383501468A5039855401 @default.
- W4383501468 hasAuthorship W4383501468A5085534314 @default.
- W4383501468 hasAuthorship W4383501468A5092420843 @default.
- W4383501468 hasConcept C110083411 @default.
- W4383501468 hasConcept C11413529 @default.
- W4383501468 hasConcept C117568660 @default.
- W4383501468 hasConcept C119857082 @default.
- W4383501468 hasConcept C12267149 @default.
- W4383501468 hasConcept C139719470 @default.
- W4383501468 hasConcept C149635348 @default.
- W4383501468 hasConcept C150594956 @default.
- W4383501468 hasConcept C151956035 @default.
- W4383501468 hasConcept C154945302 @default.
- W4383501468 hasConcept C162324750 @default.
- W4383501468 hasConcept C2776867660 @default.
- W4383501468 hasConcept C41008148 @default.
- W4383501468 hasConcept C52001869 @default.
- W4383501468 hasConceptScore W4383501468C110083411 @default.
- W4383501468 hasConceptScore W4383501468C11413529 @default.
- W4383501468 hasConceptScore W4383501468C117568660 @default.
- W4383501468 hasConceptScore W4383501468C119857082 @default.
- W4383501468 hasConceptScore W4383501468C12267149 @default.
- W4383501468 hasConceptScore W4383501468C139719470 @default.
- W4383501468 hasConceptScore W4383501468C149635348 @default.
- W4383501468 hasConceptScore W4383501468C150594956 @default.
- W4383501468 hasConceptScore W4383501468C151956035 @default.
- W4383501468 hasConceptScore W4383501468C154945302 @default.
- W4383501468 hasConceptScore W4383501468C162324750 @default.
- W4383501468 hasConceptScore W4383501468C2776867660 @default.
- W4383501468 hasConceptScore W4383501468C41008148 @default.
- W4383501468 hasConceptScore W4383501468C52001869 @default.
- W4383501468 hasLocation W43835014681 @default.
- W4383501468 hasOpenAccess W4383501468 @default.
- W4383501468 hasPrimaryLocation W43835014681 @default.
- W4383501468 hasRelatedWork W2539163683 @default.
- W4383501468 hasRelatedWork W2595988085 @default.
- W4383501468 hasRelatedWork W2979979539 @default.
- W4383501468 hasRelatedWork W2983506648 @default.
- W4383501468 hasRelatedWork W3014664599 @default.
- W4383501468 hasRelatedWork W3186233728 @default.
- W4383501468 hasRelatedWork W4214820172 @default.
- W4383501468 hasRelatedWork W4281846282 @default.
- W4383501468 hasRelatedWork W4312478656 @default.
- W4383501468 hasRelatedWork W4316658362 @default.
- W4383501468 isParatext "false" @default.
- W4383501468 isRetracted "false" @default.
- W4383501468 workType "article" @default.