Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383503189> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4383503189 abstract "We analyzed de-identified patient data from the New York State SPARCS system, consisting of 9 million patient records from 2016 through 2019. Each patient record contains 35 features including patient demographics, clinical diagnoses, length of stay, and total cost. We used big data and machine learning techniques, Python Pandas libraries, and the SciKit Learn toolkit. We examined trends in the cost distributions and identified the diagnosis codes that correspond to the largest changes. The distributions are long-tailed and have a peak near USD 9000. We compared cost samples from 2016−2019 and applied the Kolmogorov-Smirnov test to show that the samples arise from different statistical distributions (p-value < 0.0001). The dataset contained 305 unique clinical diagnoses. Of these, 275 showed positive increases in cost, which represents 90% of the categories. The largest cost increases were for EXTENSIVE 3RD DEGREE OR FULL THICKNESS BURNS with a 96.5% increase and “CARDIAC CATHETERIZATION FOR OTHER NON-CORONARY CONDITIONS” with a 96% increase. We developed models to predict costs using machine learning, too. The model input consisted of patient demographics and diagnosis codes. The model output was the predicted cost for treatment. We investigated the Catboost regression model and computed the R2 score for performance evaluation. We achieved R2 values in the range of 0.59 to 0.88. The higher R2 value is obtained when the length of stay is used as an input feature. Though the cost distributions were different from 2016−2019, the R2 scores for the proposed models for the years 2016 through 2019 were consistent. The methodology in this study helps providers and policymakers predict healthcare costs for planning purposes better. The trends in the costs and the identification of diagnostic codes associated with large cost increases guide expenditure in the most needed area. The results suggest that the age group 70 and older benefits from targeted interventions." @default.
- W4383503189 created "2023-07-08" @default.
- W4383503189 creator A5014040688 @default.
- W4383503189 creator A5024268264 @default.
- W4383503189 creator A5042395232 @default.
- W4383503189 creator A5066757233 @default.
- W4383503189 date "2023-04-14" @default.
- W4383503189 modified "2023-10-16" @default.
- W4383503189 title "Machine Learning Models For Patient Medical Cost Prediction and Trend Analysis Using Open Healthcare Data" @default.
- W4383503189 cites W1971609484 @default.
- W4383503189 cites W2149395296 @default.
- W4383503189 cites W2896667489 @default.
- W4383503189 cites W2913730834 @default.
- W4383503189 cites W2959548014 @default.
- W4383503189 cites W2979434443 @default.
- W4383503189 cites W2997967197 @default.
- W4383503189 cites W3025394897 @default.
- W4383503189 cites W3204535162 @default.
- W4383503189 cites W4294974996 @default.
- W4383503189 cites W4361003621 @default.
- W4383503189 doi "https://doi.org/10.1109/iceib57887.2023.10170453" @default.
- W4383503189 hasPublicationYear "2023" @default.
- W4383503189 type Work @default.
- W4383503189 citedByCount "0" @default.
- W4383503189 crossrefType "proceedings-article" @default.
- W4383503189 hasAuthorship W4383503189A5014040688 @default.
- W4383503189 hasAuthorship W4383503189A5024268264 @default.
- W4383503189 hasAuthorship W4383503189A5042395232 @default.
- W4383503189 hasAuthorship W4383503189A5066757233 @default.
- W4383503189 hasConcept C105795698 @default.
- W4383503189 hasConcept C111919701 @default.
- W4383503189 hasConcept C119857082 @default.
- W4383503189 hasConcept C126838900 @default.
- W4383503189 hasConcept C133425853 @default.
- W4383503189 hasConcept C141071460 @default.
- W4383503189 hasConcept C144024400 @default.
- W4383503189 hasConcept C149923435 @default.
- W4383503189 hasConcept C152877465 @default.
- W4383503189 hasConcept C154945302 @default.
- W4383503189 hasConcept C162324750 @default.
- W4383503189 hasConcept C195910791 @default.
- W4383503189 hasConcept C2780084366 @default.
- W4383503189 hasConcept C2780958618 @default.
- W4383503189 hasConcept C33923547 @default.
- W4383503189 hasConcept C41008148 @default.
- W4383503189 hasConcept C519991488 @default.
- W4383503189 hasConcept C534262118 @default.
- W4383503189 hasConcept C71924100 @default.
- W4383503189 hasConcept C83546350 @default.
- W4383503189 hasConceptScore W4383503189C105795698 @default.
- W4383503189 hasConceptScore W4383503189C111919701 @default.
- W4383503189 hasConceptScore W4383503189C119857082 @default.
- W4383503189 hasConceptScore W4383503189C126838900 @default.
- W4383503189 hasConceptScore W4383503189C133425853 @default.
- W4383503189 hasConceptScore W4383503189C141071460 @default.
- W4383503189 hasConceptScore W4383503189C144024400 @default.
- W4383503189 hasConceptScore W4383503189C149923435 @default.
- W4383503189 hasConceptScore W4383503189C152877465 @default.
- W4383503189 hasConceptScore W4383503189C154945302 @default.
- W4383503189 hasConceptScore W4383503189C162324750 @default.
- W4383503189 hasConceptScore W4383503189C195910791 @default.
- W4383503189 hasConceptScore W4383503189C2780084366 @default.
- W4383503189 hasConceptScore W4383503189C2780958618 @default.
- W4383503189 hasConceptScore W4383503189C33923547 @default.
- W4383503189 hasConceptScore W4383503189C41008148 @default.
- W4383503189 hasConceptScore W4383503189C519991488 @default.
- W4383503189 hasConceptScore W4383503189C534262118 @default.
- W4383503189 hasConceptScore W4383503189C71924100 @default.
- W4383503189 hasConceptScore W4383503189C83546350 @default.
- W4383503189 hasLocation W43835031891 @default.
- W4383503189 hasOpenAccess W4383503189 @default.
- W4383503189 hasPrimaryLocation W43835031891 @default.
- W4383503189 hasRelatedWork W2060912888 @default.
- W4383503189 hasRelatedWork W2080727847 @default.
- W4383503189 hasRelatedWork W2119696881 @default.
- W4383503189 hasRelatedWork W2891993883 @default.
- W4383503189 hasRelatedWork W2979801952 @default.
- W4383503189 hasRelatedWork W2981850339 @default.
- W4383503189 hasRelatedWork W4285815787 @default.
- W4383503189 hasRelatedWork W4309637067 @default.
- W4383503189 hasRelatedWork W4312949351 @default.
- W4383503189 hasRelatedWork W4316082230 @default.
- W4383503189 isParatext "false" @default.
- W4383503189 isRetracted "false" @default.
- W4383503189 workType "article" @default.