Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383534493> ?p ?o ?g. }
- W4383534493 abstract "Machine learning (ML) enabled classification models are becoming increasingly popular for tackling the sheer volume and speed of online misinformation and other content that could be identified as harmful. In building these models, data scientists need to take a stance on the legitimacy, authoritativeness and objectivity of the sources of ``truth used for model training and testing. This has political, ethical and epistemic implications which are rarely addressed in technical papers. Despite (and due to) their reported high accuracy and performance, ML-driven moderation systems have the potential to shape online public debate and create downstream negative impacts such as undue censorship and the reinforcing of false beliefs. Using collaborative ethnography and theoretical insights from social studies of science and expertise, we offer a critical analysis of the process of building ML models for (mis)information classification: we identify a series of algorithmic contingencies--key moments during model development that could lead to different future outcomes, uncertainty and harmful effects as these tools are deployed by social media platforms. We conclude by offering a tentative path toward reflexive and responsible development of ML tools for moderating misinformation and other harmful content online." @default.
- W4383534493 created "2023-07-08" @default.
- W4383534493 creator A5025130001 @default.
- W4383534493 creator A5037777478 @default.
- W4383534493 creator A5077095301 @default.
- W4383534493 creator A5077858858 @default.
- W4383534493 date "2023-01-02" @default.
- W4383534493 modified "2023-09-26" @default.
- W4383534493 title "Ethical, political and epistemic implications of machine learning (mis)information classification: insights from an interdisciplinary collaboration between social and data scientists" @default.
- W4383534493 cites W1516338434 @default.
- W4383534493 cites W1574100564 @default.
- W4383534493 cites W1838055528 @default.
- W4383534493 cites W2007619812 @default.
- W4383534493 cites W2015363484 @default.
- W4383534493 cites W2018001752 @default.
- W4383534493 cites W2049941951 @default.
- W4383534493 cites W2078319677 @default.
- W4383534493 cites W2087761187 @default.
- W4383534493 cites W2099152065 @default.
- W4383534493 cites W2100967449 @default.
- W4383534493 cites W2132553681 @default.
- W4383534493 cites W2143712959 @default.
- W4383534493 cites W2150643376 @default.
- W4383534493 cites W2157746366 @default.
- W4383534493 cites W2221569187 @default.
- W4383534493 cites W2544357754 @default.
- W4383534493 cites W2742285759 @default.
- W4383534493 cites W2743800013 @default.
- W4383534493 cites W2759820691 @default.
- W4383534493 cites W2766462585 @default.
- W4383534493 cites W2775269050 @default.
- W4383534493 cites W2790166049 @default.
- W4383534493 cites W2883384762 @default.
- W4383534493 cites W2883786115 @default.
- W4383534493 cites W2897154134 @default.
- W4383534493 cites W2921519451 @default.
- W4383534493 cites W2924988155 @default.
- W4383534493 cites W2945267390 @default.
- W4383534493 cites W2960793930 @default.
- W4383534493 cites W2968201166 @default.
- W4383534493 cites W2982071752 @default.
- W4383534493 cites W3008694996 @default.
- W4383534493 cites W3022924198 @default.
- W4383534493 cites W3031781733 @default.
- W4383534493 cites W3081389081 @default.
- W4383534493 cites W3089761966 @default.
- W4383534493 cites W3097891421 @default.
- W4383534493 cites W3099917429 @default.
- W4383534493 cites W3125382798 @default.
- W4383534493 cites W3127162919 @default.
- W4383534493 cites W3132223950 @default.
- W4383534493 cites W3133631714 @default.
- W4383534493 cites W3134774296 @default.
- W4383534493 cites W3139464810 @default.
- W4383534493 cites W3153567752 @default.
- W4383534493 cites W3158349484 @default.
- W4383534493 cites W3158874961 @default.
- W4383534493 cites W3165211286 @default.
- W4383534493 cites W3174220540 @default.
- W4383534493 cites W3182305728 @default.
- W4383534493 cites W3183398589 @default.
- W4383534493 cites W3192279017 @default.
- W4383534493 cites W3209972423 @default.
- W4383534493 cites W3211328237 @default.
- W4383534493 cites W3212368439 @default.
- W4383534493 cites W4206794332 @default.
- W4383534493 cites W4214806096 @default.
- W4383534493 cites W4236291264 @default.
- W4383534493 cites W4240322660 @default.
- W4383534493 cites W4242918116 @default.
- W4383534493 cites W4252594356 @default.
- W4383534493 cites W4284669411 @default.
- W4383534493 cites W4288083802 @default.
- W4383534493 cites W583485016 @default.
- W4383534493 doi "https://doi.org/10.1080/23299460.2023.2222514" @default.
- W4383534493 hasPublicationYear "2023" @default.
- W4383534493 type Work @default.
- W4383534493 citedByCount "0" @default.
- W4383534493 crossrefType "journal-article" @default.
- W4383534493 hasAuthorship W4383534493A5025130001 @default.
- W4383534493 hasAuthorship W4383534493A5037777478 @default.
- W4383534493 hasAuthorship W4383534493A5077095301 @default.
- W4383534493 hasAuthorship W4383534493A5077858858 @default.
- W4383534493 hasBestOaLocation W43835344931 @default.
- W4383534493 hasConcept C111472728 @default.
- W4383534493 hasConcept C13200473 @default.
- W4383534493 hasConcept C136764020 @default.
- W4383534493 hasConcept C138885662 @default.
- W4383534493 hasConcept C144024400 @default.
- W4383534493 hasConcept C17744445 @default.
- W4383534493 hasConcept C199539241 @default.
- W4383534493 hasConcept C2482559 @default.
- W4383534493 hasConcept C2522767166 @default.
- W4383534493 hasConcept C2776990098 @default.
- W4383534493 hasConcept C2778746772 @default.
- W4383534493 hasConcept C2780224610 @default.
- W4383534493 hasConcept C36289849 @default.
- W4383534493 hasConcept C38652104 @default.
- W4383534493 hasConcept C41008148 @default.
- W4383534493 hasConcept C46295352 @default.