Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383535210> ?p ?o ?g. }
- W4383535210 endingPage "446" @default.
- W4383535210 startingPage "446" @default.
- W4383535210 abstract "Drone detection is a significant research topic due to the potential security threats posed by the misuse of drones in both civilian and military domains. However, traditional drone detection methods are challenged by the drastic scale changes and complex ambiguity during drone flight, and it is difficult to detect small target drones quickly and efficiently. We propose an information-enhanced model based on improved YOLOv5 (TGC-YOLOv5) for fast and accurate detection of small target drones in complex environments. The main contributions of this paper are as follows: First, the Transformer encoder module is incorporated into YOLOv5 to augment attention toward the regions of interest. Second, the Global Attention Mechanism (GAM) is embraced to mitigate information diffusion among distinct layers and amplify the global cross-dimensional interaction features. Finally, the Coordinate Attention Mechanism (CA) is incorporated into the bottleneck part of C3, enhancing the extraction capability of local information for small targets. To enhance and verify the robustness and generalization of the model, a small target drone dataset (SUAV-DATA) is constructed in all-weather, multi-scenario, and complex environments. The experimental results show that based on the SUAV-DATA dataset, the AP value of TGC-YOLOv5 reaches 0.848, which is 2.5% higher than the original YOLOv5, and the Recall value of TGC-YOLOv5 reaches 0.823, which is a 3.8% improvement over the original YOLOv5. The robustness of our proposed model is also verified on the Real-World open-source image dataset, achieving the best accuracy in light, fog, stain, and saturation pollution images. The findings and methods of this paper have important significance and value for improving the efficiency and precision of drone detection." @default.
- W4383535210 created "2023-07-08" @default.
- W4383535210 creator A5007267853 @default.
- W4383535210 creator A5010455569 @default.
- W4383535210 creator A5021252039 @default.
- W4383535210 creator A5023638809 @default.
- W4383535210 creator A5030232546 @default.
- W4383535210 creator A5047281734 @default.
- W4383535210 creator A5051342214 @default.
- W4383535210 creator A5051697260 @default.
- W4383535210 creator A5074973958 @default.
- W4383535210 date "2023-07-06" @default.
- W4383535210 modified "2023-10-16" @default.
- W4383535210 title "TGC-YOLOv5: An Enhanced YOLOv5 Drone Detection Model Based on Transformer, GAM & CA Attention Mechanism" @default.
- W4383535210 cites W1558638712 @default.
- W4383535210 cites W2017135770 @default.
- W4383535210 cites W2145607950 @default.
- W4383535210 cites W2594258618 @default.
- W4383535210 cites W2892072988 @default.
- W4383535210 cites W2913430259 @default.
- W4383535210 cites W2928165649 @default.
- W4383535210 cites W2953622767 @default.
- W4383535210 cites W2963677869 @default.
- W4383535210 cites W2994928934 @default.
- W4383535210 cites W3006061572 @default.
- W4383535210 cites W3009515551 @default.
- W4383535210 cites W3088979451 @default.
- W4383535210 cites W3089146878 @default.
- W4383535210 cites W3089809257 @default.
- W4383535210 cites W3097427031 @default.
- W4383535210 cites W3118003871 @default.
- W4383535210 cites W3127753524 @default.
- W4383535210 cites W3165580592 @default.
- W4383535210 cites W3177052299 @default.
- W4383535210 cites W3210684347 @default.
- W4383535210 cites W3212974055 @default.
- W4383535210 cites W3215212988 @default.
- W4383535210 cites W4207034821 @default.
- W4383535210 cites W4212965978 @default.
- W4383535210 cites W4220859115 @default.
- W4383535210 cites W4283029931 @default.
- W4383535210 cites W4283210906 @default.
- W4383535210 cites W4283821950 @default.
- W4383535210 cites W4285221100 @default.
- W4383535210 cites W4285820694 @default.
- W4383535210 cites W4287847663 @default.
- W4383535210 cites W4289745098 @default.
- W4383535210 cites W4293083813 @default.
- W4383535210 cites W4295066019 @default.
- W4383535210 cites W4304172678 @default.
- W4383535210 cites W4307957701 @default.
- W4383535210 cites W4308623280 @default.
- W4383535210 cites W4310171867 @default.
- W4383535210 cites W4312494456 @default.
- W4383535210 cites W4312737473 @default.
- W4383535210 cites W4313404424 @default.
- W4383535210 cites W4313452645 @default.
- W4383535210 cites W4313493561 @default.
- W4383535210 cites W4313827729 @default.
- W4383535210 cites W4318820659 @default.
- W4383535210 cites W4319082174 @default.
- W4383535210 cites W4319789280 @default.
- W4383535210 cites W4319927108 @default.
- W4383535210 cites W4361862798 @default.
- W4383535210 cites W4362644916 @default.
- W4383535210 cites W4362669782 @default.
- W4383535210 cites W4366422633 @default.
- W4383535210 cites W4366980266 @default.
- W4383535210 cites W4367146526 @default.
- W4383535210 cites W4368228133 @default.
- W4383535210 doi "https://doi.org/10.3390/drones7070446" @default.
- W4383535210 hasPublicationYear "2023" @default.
- W4383535210 type Work @default.
- W4383535210 citedByCount "0" @default.
- W4383535210 crossrefType "journal-article" @default.
- W4383535210 hasAuthorship W4383535210A5007267853 @default.
- W4383535210 hasAuthorship W4383535210A5010455569 @default.
- W4383535210 hasAuthorship W4383535210A5021252039 @default.
- W4383535210 hasAuthorship W4383535210A5023638809 @default.
- W4383535210 hasAuthorship W4383535210A5030232546 @default.
- W4383535210 hasAuthorship W4383535210A5047281734 @default.
- W4383535210 hasAuthorship W4383535210A5051342214 @default.
- W4383535210 hasAuthorship W4383535210A5051697260 @default.
- W4383535210 hasAuthorship W4383535210A5074973958 @default.
- W4383535210 hasBestOaLocation W43835352101 @default.
- W4383535210 hasConcept C104317684 @default.
- W4383535210 hasConcept C111919701 @default.
- W4383535210 hasConcept C118505674 @default.
- W4383535210 hasConcept C119857082 @default.
- W4383535210 hasConcept C124101348 @default.
- W4383535210 hasConcept C149635348 @default.
- W4383535210 hasConcept C154945302 @default.
- W4383535210 hasConcept C185592680 @default.
- W4383535210 hasConcept C199360897 @default.
- W4383535210 hasConcept C2780513914 @default.
- W4383535210 hasConcept C2780522230 @default.
- W4383535210 hasConcept C31972630 @default.
- W4383535210 hasConcept C41008148 @default.