Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383535526> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4383535526 endingPage "449" @default.
- W4383535526 startingPage "438" @default.
- W4383535526 abstract "Mail classification methods based on machine learning have been introduced to combat spams. However, few researches focus on the most powerful machine learning model that is neural networks. In this paper, the author trains BP neural networks to detect spams. The inputs of the neural networks are only information about words, punctures, signs, numbers and illegal words. Five neural networks which are different in number of neurons and number of layers are experimented on. All networks apply Rectified Linear Unit (ReLU) functions and Momentum learning technology. The results show that the network with four hidden layers enjoys the best classifying accuracy of 97.0%. In networks with two hidden layers, when the number of neurons in each layer is above 300, the accuracy is between 95.5% and 96.0%; and 100 neurons in each layer result in an accuracy of 93.8%. Although the training only captures information of words, punctures and signs, the networks have achieved high accuracy, and the author suggests that making the computer understand sentences as well as other kinds of improvements can lead to even higher performance." @default.
- W4383535526 created "2023-07-08" @default.
- W4383535526 creator A5084302554 @default.
- W4383535526 date "2023-06-14" @default.
- W4383535526 modified "2023-10-07" @default.
- W4383535526 title "Spam mail classification using back propagation neural networks" @default.
- W4383535526 doi "https://doi.org/10.54254/2755-2721/5/20230617" @default.
- W4383535526 hasPublicationYear "2023" @default.
- W4383535526 type Work @default.
- W4383535526 citedByCount "0" @default.
- W4383535526 crossrefType "journal-article" @default.
- W4383535526 hasAuthorship W4383535526A5084302554 @default.
- W4383535526 hasConcept C119857082 @default.
- W4383535526 hasConcept C120665830 @default.
- W4383535526 hasConcept C121332964 @default.
- W4383535526 hasConcept C154945302 @default.
- W4383535526 hasConcept C155032097 @default.
- W4383535526 hasConcept C178790620 @default.
- W4383535526 hasConcept C185592680 @default.
- W4383535526 hasConcept C192209626 @default.
- W4383535526 hasConcept C2779227376 @default.
- W4383535526 hasConcept C41008148 @default.
- W4383535526 hasConcept C50644808 @default.
- W4383535526 hasConceptScore W4383535526C119857082 @default.
- W4383535526 hasConceptScore W4383535526C120665830 @default.
- W4383535526 hasConceptScore W4383535526C121332964 @default.
- W4383535526 hasConceptScore W4383535526C154945302 @default.
- W4383535526 hasConceptScore W4383535526C155032097 @default.
- W4383535526 hasConceptScore W4383535526C178790620 @default.
- W4383535526 hasConceptScore W4383535526C185592680 @default.
- W4383535526 hasConceptScore W4383535526C192209626 @default.
- W4383535526 hasConceptScore W4383535526C2779227376 @default.
- W4383535526 hasConceptScore W4383535526C41008148 @default.
- W4383535526 hasConceptScore W4383535526C50644808 @default.
- W4383535526 hasIssue "1" @default.
- W4383535526 hasLocation W43835355261 @default.
- W4383535526 hasOpenAccess W4383535526 @default.
- W4383535526 hasPrimaryLocation W43835355261 @default.
- W4383535526 hasRelatedWork W1941128035 @default.
- W4383535526 hasRelatedWork W2157746493 @default.
- W4383535526 hasRelatedWork W2792697259 @default.
- W4383535526 hasRelatedWork W2894173309 @default.
- W4383535526 hasRelatedWork W2945765785 @default.
- W4383535526 hasRelatedWork W2961085424 @default.
- W4383535526 hasRelatedWork W3107336785 @default.
- W4383535526 hasRelatedWork W4206400463 @default.
- W4383535526 hasRelatedWork W1629725936 @default.
- W4383535526 hasRelatedWork W2609564064 @default.
- W4383535526 hasVolume "5" @default.
- W4383535526 isParatext "false" @default.
- W4383535526 isRetracted "false" @default.
- W4383535526 workType "article" @default.