Matches in SemOpenAlex for { <https://semopenalex.org/work/W4383551477> ?p ?o ?g. }
- W4383551477 abstract "Abstract In the present study, we aim to propose an effective and robust ensemble-learning approach with stacked generalization for image segmentation. Initially, the input images are processed for feature extraction and edge detection using the Gabor filter and the Canny algorithms, respectively; our main goal is to determine the most feature descriptions. Subsequently, we applied the stacking generalization technique, which is generally built with two main learning levels. The first level is composed of two algorithms that give good results in the literature, namely: LightGBM (Light Gradient Boosting Machine) and SVM (support vector machine). The second level is the meta-model in which we use a predictor model that takes the base-level predictions to improve the accuracy of the final prediction. In the stacked generalization process, we use the Extreme Gradient Boosting (XGBoost); it takes as input the sub-models’ outputs to better classify each pixel of the image to give the final prediction. Today, several research works exist in the literature using different machine learning algorithms; in fact, instead of trying to find a single efficient and optimal learner, ensemble-based techniques take the advantage of each basic model; they integrate their outputs to obtain a more consistent and reliable learner. The result obtained from the models of individuals and our proposed approach is compared using a set of evaluation measures for image quality such as IoU, DSC, CC, SSIM, SAM, and UQI. The evaluation and a comparison of the results obtained showed more consistent predictions for the proposed model. Thus, we have made a comparison with some recent deep learning-based unsupervised segmentation methods. The evaluation and a comparison of the results obtained showed more coherent predictions for our stacked generalization in terms of precision, robustness, and consistency." @default.
- W4383551477 created "2023-07-08" @default.
- W4383551477 creator A5024707829 @default.
- W4383551477 creator A5036451891 @default.
- W4383551477 creator A5037070384 @default.
- W4383551477 creator A5063786906 @default.
- W4383551477 date "2023-07-07" @default.
- W4383551477 modified "2023-10-17" @default.
- W4383551477 title "A robust and consistent stack generalized ensemble-learning framework for image segmentation" @default.
- W4383551477 cites W1508404128 @default.
- W4383551477 cites W1534477342 @default.
- W4383551477 cites W1586847502 @default.
- W4383551477 cites W1923335182 @default.
- W4383551477 cites W1973485945 @default.
- W4383551477 cites W2002260165 @default.
- W4383551477 cites W2046124996 @default.
- W4383551477 cites W2063907334 @default.
- W4383551477 cites W2069562432 @default.
- W4383551477 cites W2078411301 @default.
- W4383551477 cites W2082093773 @default.
- W4383551477 cites W2100329651 @default.
- W4383551477 cites W2104019579 @default.
- W4383551477 cites W2110158442 @default.
- W4383551477 cites W2118558214 @default.
- W4383551477 cites W2121947440 @default.
- W4383551477 cites W2133665775 @default.
- W4383551477 cites W2139529730 @default.
- W4383551477 cites W2145023731 @default.
- W4383551477 cites W2157121948 @default.
- W4383551477 cites W2241620988 @default.
- W4383551477 cites W2244486986 @default.
- W4383551477 cites W2293797505 @default.
- W4383551477 cites W2481897712 @default.
- W4383551477 cites W2767031373 @default.
- W4383551477 cites W2799918535 @default.
- W4383551477 cites W2801780873 @default.
- W4383551477 cites W28412257 @default.
- W4383551477 cites W2892669811 @default.
- W4383551477 cites W2901602964 @default.
- W4383551477 cites W2923146325 @default.
- W4383551477 cites W2953122916 @default.
- W4383551477 cites W2965799248 @default.
- W4383551477 cites W2969603861 @default.
- W4383551477 cites W2982616372 @default.
- W4383551477 cites W3007001459 @default.
- W4383551477 cites W3015287415 @default.
- W4383551477 cites W3019645317 @default.
- W4383551477 cites W3093018323 @default.
- W4383551477 cites W3102476541 @default.
- W4383551477 cites W3119748807 @default.
- W4383551477 cites W3176551610 @default.
- W4383551477 cites W3178368773 @default.
- W4383551477 cites W3184821115 @default.
- W4383551477 cites W4239510810 @default.
- W4383551477 cites W4248308907 @default.
- W4383551477 doi "https://doi.org/10.1186/s44147-023-00226-4" @default.
- W4383551477 hasPublicationYear "2023" @default.
- W4383551477 type Work @default.
- W4383551477 citedByCount "0" @default.
- W4383551477 crossrefType "journal-article" @default.
- W4383551477 hasAuthorship W4383551477A5024707829 @default.
- W4383551477 hasAuthorship W4383551477A5036451891 @default.
- W4383551477 hasAuthorship W4383551477A5037070384 @default.
- W4383551477 hasAuthorship W4383551477A5063786906 @default.
- W4383551477 hasBestOaLocation W43835514771 @default.
- W4383551477 hasConcept C119857082 @default.
- W4383551477 hasConcept C119898033 @default.
- W4383551477 hasConcept C12267149 @default.
- W4383551477 hasConcept C134306372 @default.
- W4383551477 hasConcept C138885662 @default.
- W4383551477 hasConcept C153180895 @default.
- W4383551477 hasConcept C154945302 @default.
- W4383551477 hasConcept C169258074 @default.
- W4383551477 hasConcept C177148314 @default.
- W4383551477 hasConcept C2776401178 @default.
- W4383551477 hasConcept C2779883129 @default.
- W4383551477 hasConcept C33923547 @default.
- W4383551477 hasConcept C41008148 @default.
- W4383551477 hasConcept C41895202 @default.
- W4383551477 hasConcept C45942800 @default.
- W4383551477 hasConcept C46686674 @default.
- W4383551477 hasConcept C52622490 @default.
- W4383551477 hasConcept C70153297 @default.
- W4383551477 hasConcept C89600930 @default.
- W4383551477 hasConceptScore W4383551477C119857082 @default.
- W4383551477 hasConceptScore W4383551477C119898033 @default.
- W4383551477 hasConceptScore W4383551477C12267149 @default.
- W4383551477 hasConceptScore W4383551477C134306372 @default.
- W4383551477 hasConceptScore W4383551477C138885662 @default.
- W4383551477 hasConceptScore W4383551477C153180895 @default.
- W4383551477 hasConceptScore W4383551477C154945302 @default.
- W4383551477 hasConceptScore W4383551477C169258074 @default.
- W4383551477 hasConceptScore W4383551477C177148314 @default.
- W4383551477 hasConceptScore W4383551477C2776401178 @default.
- W4383551477 hasConceptScore W4383551477C2779883129 @default.
- W4383551477 hasConceptScore W4383551477C33923547 @default.
- W4383551477 hasConceptScore W4383551477C41008148 @default.
- W4383551477 hasConceptScore W4383551477C41895202 @default.
- W4383551477 hasConceptScore W4383551477C45942800 @default.
- W4383551477 hasConceptScore W4383551477C46686674 @default.